Generators of simple graded Lie algebras of finite growth
Colloquium Mathematicum, Tome 148 (2017) no. 2, pp. 315-324.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $X$ be a simple graded Lie algebra of finite growth over an algebraically closed field of characteristic zero. We prove that $X$ can be generated by two elements.
DOI : 10.4064/cm6976-6-2016
Keywords: simple graded lie algebra finite growth algebraically closed field characteristic zero prove generated elements

Liming Tang 1 ; Wende Liu 1

1 School of Mathematical Sciences Harbin Normal University Harbin 150025, China
@article{10_4064_cm6976_6_2016,
     author = {Liming Tang and Wende Liu},
     title = {Generators of simple graded {Lie} algebras of finite growth},
     journal = {Colloquium Mathematicum},
     pages = {315--324},
     publisher = {mathdoc},
     volume = {148},
     number = {2},
     year = {2017},
     doi = {10.4064/cm6976-6-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6976-6-2016/}
}
TY  - JOUR
AU  - Liming Tang
AU  - Wende Liu
TI  - Generators of simple graded Lie algebras of finite growth
JO  - Colloquium Mathematicum
PY  - 2017
SP  - 315
EP  - 324
VL  - 148
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6976-6-2016/
DO  - 10.4064/cm6976-6-2016
LA  - en
ID  - 10_4064_cm6976_6_2016
ER  - 
%0 Journal Article
%A Liming Tang
%A Wende Liu
%T Generators of simple graded Lie algebras of finite growth
%J Colloquium Mathematicum
%D 2017
%P 315-324
%V 148
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6976-6-2016/
%R 10.4064/cm6976-6-2016
%G en
%F 10_4064_cm6976_6_2016
Liming Tang; Wende Liu. Generators of simple graded Lie algebras of finite growth. Colloquium Mathematicum, Tome 148 (2017) no. 2, pp. 315-324. doi : 10.4064/cm6976-6-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm6976-6-2016/

Cité par Sources :