On some arithmetical functions and the number of pure number fields
Colloquium Mathematicum, Tome 149 (2017) no. 2, pp. 275-290
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
First, we define the Möbius and Liouville functions of order $k$ over a number field $F$ for a positive integer $k$. We give formulas for their partial sums. Moreover, we consider the number of $k$-free ideals of the integer ring of $F$. Next, we investigate the number of pure number fields. In the previous paper, we considered lower and upper bounds of that number. However, the estimates were too coarse. One of the purposes of this paper is to improve the upper bound.
Keywords:
first define bius liouville functions order number field positive integer formulas their partial sums moreover consider number k free ideals integer ring investigate number pure number fields previous paper considered lower upper bounds number however estimates too coarse purposes paper improve upper bound
Affiliations des auteurs :
Yusuke Fujisawa 1
@article{10_4064_cm6970_12_2016,
author = {Yusuke Fujisawa},
title = {On some arithmetical functions and the number of pure number fields},
journal = {Colloquium Mathematicum},
pages = {275--290},
publisher = {mathdoc},
volume = {149},
number = {2},
year = {2017},
doi = {10.4064/cm6970-12-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6970-12-2016/}
}
TY - JOUR AU - Yusuke Fujisawa TI - On some arithmetical functions and the number of pure number fields JO - Colloquium Mathematicum PY - 2017 SP - 275 EP - 290 VL - 149 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm6970-12-2016/ DO - 10.4064/cm6970-12-2016 LA - en ID - 10_4064_cm6970_12_2016 ER -
Yusuke Fujisawa. On some arithmetical functions and the number of pure number fields. Colloquium Mathematicum, Tome 149 (2017) no. 2, pp. 275-290. doi: 10.4064/cm6970-12-2016
Cité par Sources :