On the norm of the centralizers of a group
Colloquium Mathematicum, Tome 149 (2017) no. 1, pp. 87-91.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For any group $G$, let $C(G)$ denote the intersection of the normalizers of centralizers of all elements of $G$. Set $C_0= 1$. Define $C_{i+1}(G)/C_i(G)=C(G/C_i(G))$ for $i\geq 0$. Denote by $C_{\infty }(G)$ the terminal term of this ascending series. We show that a finitely generated group $G$ is nilpotent if and only if $G = C_{n}(G)$ for some positive integer $n$.
DOI : 10.4064/cm6965-8-2016
Keywords: group denote intersection normalizers centralizers elements set define i geq denote infty terminal term ascending series finitely generated group nilpotent only positive integer

Mohammad Zarrin 1

1 Department of Mathematics University of Kurdistan P.O. Box 416, Sanandaj, Iran
@article{10_4064_cm6965_8_2016,
     author = {Mohammad Zarrin},
     title = {On the norm of the centralizers of a group},
     journal = {Colloquium Mathematicum},
     pages = {87--91},
     publisher = {mathdoc},
     volume = {149},
     number = {1},
     year = {2017},
     doi = {10.4064/cm6965-8-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6965-8-2016/}
}
TY  - JOUR
AU  - Mohammad Zarrin
TI  - On the norm of the centralizers of a group
JO  - Colloquium Mathematicum
PY  - 2017
SP  - 87
EP  - 91
VL  - 149
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6965-8-2016/
DO  - 10.4064/cm6965-8-2016
LA  - en
ID  - 10_4064_cm6965_8_2016
ER  - 
%0 Journal Article
%A Mohammad Zarrin
%T On the norm of the centralizers of a group
%J Colloquium Mathematicum
%D 2017
%P 87-91
%V 149
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6965-8-2016/
%R 10.4064/cm6965-8-2016
%G en
%F 10_4064_cm6965_8_2016
Mohammad Zarrin. On the norm of the centralizers of a group. Colloquium Mathematicum, Tome 149 (2017) no. 1, pp. 87-91. doi : 10.4064/cm6965-8-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm6965-8-2016/

Cité par Sources :