On the $x$-coordinates of Pell equations which are Fibonacci numbers II
Colloquium Mathematicum, Tome 149 (2017) no. 1, pp. 75-85.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For an integer $d\geq 2$ which is not a square, we show that there is at most one positive integer $x$ appearing in a solution of the Pell equation $x^2-dy^2=\pm 4$ which is a Fibonacci number, except when $d=2, 5$, where we have exactly two values of $x$ being members of the Fibonacci sequence.
DOI : 10.4064/cm6960-8-2016
Keywords: integer geq which square there positive integer appearing solution pell equation dy which fibonacci number except where have exactly values being members fibonacci sequence

Bir Kafle 1 ; Florian Luca 2 ; Alain Togbé 1

1 Mathematics Department Purdue University Northwest 1401 S, U.S. 421 Westville, IN 46391, U.S.A.
2 School of Mathematics University of the Witwatersrand Private Bag X3 Wits 2050, South Africa and Max Planck Institute for Mathematics Vivatgasse 7 53111 Bonn, Germany
@article{10_4064_cm6960_8_2016,
     author = {Bir Kafle and Florian Luca and Alain Togb\'e},
     title = {On the $x$-coordinates of {Pell} equations which are {Fibonacci} numbers {II}},
     journal = {Colloquium Mathematicum},
     pages = {75--85},
     publisher = {mathdoc},
     volume = {149},
     number = {1},
     year = {2017},
     doi = {10.4064/cm6960-8-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6960-8-2016/}
}
TY  - JOUR
AU  - Bir Kafle
AU  - Florian Luca
AU  - Alain Togbé
TI  - On the $x$-coordinates of Pell equations which are Fibonacci numbers II
JO  - Colloquium Mathematicum
PY  - 2017
SP  - 75
EP  - 85
VL  - 149
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6960-8-2016/
DO  - 10.4064/cm6960-8-2016
LA  - en
ID  - 10_4064_cm6960_8_2016
ER  - 
%0 Journal Article
%A Bir Kafle
%A Florian Luca
%A Alain Togbé
%T On the $x$-coordinates of Pell equations which are Fibonacci numbers II
%J Colloquium Mathematicum
%D 2017
%P 75-85
%V 149
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6960-8-2016/
%R 10.4064/cm6960-8-2016
%G en
%F 10_4064_cm6960_8_2016
Bir Kafle; Florian Luca; Alain Togbé. On the $x$-coordinates of Pell equations which are Fibonacci numbers II. Colloquium Mathematicum, Tome 149 (2017) no. 1, pp. 75-85. doi : 10.4064/cm6960-8-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm6960-8-2016/

Cité par Sources :