Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Wei Gao 1 ; Weifan Wang 2
@article{10_4064_cm6959_8_2016, author = {Wei Gao and Weifan Wang}, title = {A tight neighborhood union condition on fractional $(g,f,n{\textquoteright},m)$-critical deleted graphs}, journal = {Colloquium Mathematicum}, pages = {291--298}, publisher = {mathdoc}, volume = {149}, number = {2}, year = {2017}, doi = {10.4064/cm6959-8-2016}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6959-8-2016/} }
TY - JOUR AU - Wei Gao AU - Weifan Wang TI - A tight neighborhood union condition on fractional $(g,f,n’,m)$-critical deleted graphs JO - Colloquium Mathematicum PY - 2017 SP - 291 EP - 298 VL - 149 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm6959-8-2016/ DO - 10.4064/cm6959-8-2016 LA - en ID - 10_4064_cm6959_8_2016 ER -
%0 Journal Article %A Wei Gao %A Weifan Wang %T A tight neighborhood union condition on fractional $(g,f,n’,m)$-critical deleted graphs %J Colloquium Mathematicum %D 2017 %P 291-298 %V 149 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm6959-8-2016/ %R 10.4064/cm6959-8-2016 %G en %F 10_4064_cm6959_8_2016
Wei Gao; Weifan Wang. A tight neighborhood union condition on fractional $(g,f,n’,m)$-critical deleted graphs. Colloquium Mathematicum, Tome 149 (2017) no. 2, pp. 291-298. doi : 10.4064/cm6959-8-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm6959-8-2016/
Cité par Sources :