A tight neighborhood union condition on fractional $(g,f,n’,m)$-critical deleted graphs
Colloquium Mathematicum, Tome 149 (2017) no. 2, pp. 291-298
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A graph $G$ is called a fractional $(g,f,n’,m)$-critical deleted graph if it remains a fractional $(g,f,m)$-deleted graph after deleting any $n’$ vertices. We prove that if $G$ is a graph of order $n$, $1\le a\le g(x)\le f(x)\le b$ for any $x\in V(G)$, $\delta (G)\ge {b^{2}/a}+n’+2m$, $n \gt {((a+b)(2(a+b)+2m-1)+bn’)/a}$, and $|N_{G}(x_{1})\cup N_{G}(x_{2})|\ge {b(n+n’)/(a+b)}$ for any nonadjacent vertices $x_{1}$ an $x_{2}$, then $G$ is a fractional $(g,f,n’,m)$-critical deleted graph. The result is tight on the neighborhood union condition in some sense.
Keywords:
graph called fractional critical deleted graph remains fractional deleted graph after deleting vertices prove graph order delta m cup nonadjacent vertices fractional critical deleted graph result tight neighborhood union condition sense
Affiliations des auteurs :
Wei Gao 1 ; Weifan Wang 2
@article{10_4064_cm6959_8_2016,
author = {Wei Gao and Weifan Wang},
title = {A tight neighborhood union condition on fractional $(g,f,n{\textquoteright},m)$-critical deleted graphs},
journal = {Colloquium Mathematicum},
pages = {291--298},
publisher = {mathdoc},
volume = {149},
number = {2},
year = {2017},
doi = {10.4064/cm6959-8-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6959-8-2016/}
}
TY - JOUR AU - Wei Gao AU - Weifan Wang TI - A tight neighborhood union condition on fractional $(g,f,n’,m)$-critical deleted graphs JO - Colloquium Mathematicum PY - 2017 SP - 291 EP - 298 VL - 149 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm6959-8-2016/ DO - 10.4064/cm6959-8-2016 LA - en ID - 10_4064_cm6959_8_2016 ER -
%0 Journal Article %A Wei Gao %A Weifan Wang %T A tight neighborhood union condition on fractional $(g,f,n’,m)$-critical deleted graphs %J Colloquium Mathematicum %D 2017 %P 291-298 %V 149 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm6959-8-2016/ %R 10.4064/cm6959-8-2016 %G en %F 10_4064_cm6959_8_2016
Wei Gao; Weifan Wang. A tight neighborhood union condition on fractional $(g,f,n’,m)$-critical deleted graphs. Colloquium Mathematicum, Tome 149 (2017) no. 2, pp. 291-298. doi: 10.4064/cm6959-8-2016
Cité par Sources :