A tight neighborhood union condition on fractional $(g,f,n’,m)$-critical deleted graphs
Colloquium Mathematicum, Tome 149 (2017) no. 2, pp. 291-298.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A graph $G$ is called a fractional $(g,f,n’,m)$-critical deleted graph if it remains a fractional $(g,f,m)$-deleted graph after deleting any $n’$ vertices. We prove that if $G$ is a graph of order $n$, $1\le a\le g(x)\le f(x)\le b$ for any $x\in V(G)$, $\delta (G)\ge {b^{2}/a}+n’+2m$, $n \gt {((a+b)(2(a+b)+2m-1)+bn’)/a}$, and $|N_{G}(x_{1})\cup N_{G}(x_{2})|\ge {b(n+n’)/(a+b)}$ for any nonadjacent vertices $x_{1}$ an $x_{2}$, then $G$ is a fractional $(g,f,n’,m)$-critical deleted graph. The result is tight on the neighborhood union condition in some sense.
DOI : 10.4064/cm6959-8-2016
Keywords: graph called fractional critical deleted graph remains fractional deleted graph after deleting vertices prove graph order delta m cup nonadjacent vertices fractional critical deleted graph result tight neighborhood union condition sense

Wei Gao 1 ; Weifan Wang 2

1 School of Information Science and Technology Yunnan Normal University Kunming 650500, China
2 Department of Mathematics Zhejiang Normal University Jinhua 321004, China
@article{10_4064_cm6959_8_2016,
     author = {Wei Gao and Weifan Wang},
     title = {A tight neighborhood union condition on fractional $(g,f,n{\textquoteright},m)$-critical deleted graphs},
     journal = {Colloquium Mathematicum},
     pages = {291--298},
     publisher = {mathdoc},
     volume = {149},
     number = {2},
     year = {2017},
     doi = {10.4064/cm6959-8-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6959-8-2016/}
}
TY  - JOUR
AU  - Wei Gao
AU  - Weifan Wang
TI  - A tight neighborhood union condition on fractional $(g,f,n’,m)$-critical deleted graphs
JO  - Colloquium Mathematicum
PY  - 2017
SP  - 291
EP  - 298
VL  - 149
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6959-8-2016/
DO  - 10.4064/cm6959-8-2016
LA  - en
ID  - 10_4064_cm6959_8_2016
ER  - 
%0 Journal Article
%A Wei Gao
%A Weifan Wang
%T A tight neighborhood union condition on fractional $(g,f,n’,m)$-critical deleted graphs
%J Colloquium Mathematicum
%D 2017
%P 291-298
%V 149
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6959-8-2016/
%R 10.4064/cm6959-8-2016
%G en
%F 10_4064_cm6959_8_2016
Wei Gao; Weifan Wang. A tight neighborhood union condition on fractional $(g,f,n’,m)$-critical deleted graphs. Colloquium Mathematicum, Tome 149 (2017) no. 2, pp. 291-298. doi : 10.4064/cm6959-8-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm6959-8-2016/

Cité par Sources :