An asymptotic formula for Goldbach’s conjecture with monic polynomials in $\mathbb {Z}[\theta ][x]$
Colloquium Mathematicum, Tome 148 (2017) no. 2, pp. 215-223.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $k\geq 2$ be a squarefree integer, and $$ \theta=\begin{cases} \sqrt{-k} \text{if }-k\not\equiv 1 \pmod4,\\ {(\sqrt{-k}+1)}/{2} \text{if }-k\equiv 1 \pmod4.\end{cases} $$ We prove that the number $R(y)$ of representations of a monic polynomial $f(x)\in \mathbb Z[\theta][x]$, of degree $d\geq 1$, as a sum of two monic irreducible polynomials $g(x)$ and $h(x)$ in $\mathbb Z[\theta][x]$, with the coefficients of $g(x)$ and $h(x)$ bounded in modulus by $y$, is asymptotic to $(4y)^{2d-2}$.
DOI : 10.4064/cm6948-7-2016
Keywords: geq squarefree integer theta begin cases sqrt k text k equiv pmod sqrt k text k equiv pmod end cases prove number representations monic polynomial mathbb theta degree geq sum monic irreducible polynomials mathbb theta coefficients bounded modulus asymptotic d

Abílio Lemos 1 ; Anderson Luís Albuquerque de Araujo 1

1 CCE, Departamento de Matemática Universidade Federal de Viçosa 36570-900, Viçosa, MG, Brasil
@article{10_4064_cm6948_7_2016,
     author = {Ab{\'\i}lio Lemos and Anderson Lu{\'\i}s Albuquerque de Araujo},
     title = {An asymptotic formula for {Goldbach{\textquoteright}s} conjecture with monic polynomials in $\mathbb {Z}[\theta ][x]$},
     journal = {Colloquium Mathematicum},
     pages = {215--223},
     publisher = {mathdoc},
     volume = {148},
     number = {2},
     year = {2017},
     doi = {10.4064/cm6948-7-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6948-7-2016/}
}
TY  - JOUR
AU  - Abílio Lemos
AU  - Anderson Luís Albuquerque de Araujo
TI  - An asymptotic formula for Goldbach’s conjecture with monic polynomials in $\mathbb {Z}[\theta ][x]$
JO  - Colloquium Mathematicum
PY  - 2017
SP  - 215
EP  - 223
VL  - 148
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6948-7-2016/
DO  - 10.4064/cm6948-7-2016
LA  - en
ID  - 10_4064_cm6948_7_2016
ER  - 
%0 Journal Article
%A Abílio Lemos
%A Anderson Luís Albuquerque de Araujo
%T An asymptotic formula for Goldbach’s conjecture with monic polynomials in $\mathbb {Z}[\theta ][x]$
%J Colloquium Mathematicum
%D 2017
%P 215-223
%V 148
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6948-7-2016/
%R 10.4064/cm6948-7-2016
%G en
%F 10_4064_cm6948_7_2016
Abílio Lemos; Anderson Luís Albuquerque de Araujo. An asymptotic formula for Goldbach’s conjecture with monic polynomials in $\mathbb {Z}[\theta ][x]$. Colloquium Mathematicum, Tome 148 (2017) no. 2, pp. 215-223. doi : 10.4064/cm6948-7-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm6948-7-2016/

Cité par Sources :