An algebra which is a maximal commutative subalgebra in very few algebras
Colloquium Mathematicum, Tome 147 (2017) no. 2, pp. 241-246.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

“Very few” in the title means two. We show that a unital real or complex algebra generated by a nilpotent of order two can be a maximal abelian subalgebra only in two algebras. One of them is of dimension three and the other of dimension four.
DOI : 10.4064/cm6941-6-2016
Keywords: few title means unital real complex algebra generated nilpotent order maximal abelian subalgebra only algebras dimension three other dimension

Wiesław Żelazko 1

1 Institute of Mathematics Polish Academy of Sciences Śniadeckich 8 00-656 Warszawa, Poland
@article{10_4064_cm6941_6_2016,
     author = {Wies{\l}aw \.Zelazko},
     title = {An algebra which is a maximal commutative subalgebra in very few algebras},
     journal = {Colloquium Mathematicum},
     pages = {241--246},
     publisher = {mathdoc},
     volume = {147},
     number = {2},
     year = {2017},
     doi = {10.4064/cm6941-6-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6941-6-2016/}
}
TY  - JOUR
AU  - Wiesław Żelazko
TI  - An algebra which is a maximal commutative subalgebra in very few algebras
JO  - Colloquium Mathematicum
PY  - 2017
SP  - 241
EP  - 246
VL  - 147
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6941-6-2016/
DO  - 10.4064/cm6941-6-2016
LA  - en
ID  - 10_4064_cm6941_6_2016
ER  - 
%0 Journal Article
%A Wiesław Żelazko
%T An algebra which is a maximal commutative subalgebra in very few algebras
%J Colloquium Mathematicum
%D 2017
%P 241-246
%V 147
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6941-6-2016/
%R 10.4064/cm6941-6-2016
%G en
%F 10_4064_cm6941_6_2016
Wiesław Żelazko. An algebra which is a maximal commutative subalgebra in very few algebras. Colloquium Mathematicum, Tome 147 (2017) no. 2, pp. 241-246. doi : 10.4064/cm6941-6-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm6941-6-2016/

Cité par Sources :