An algebra which is a maximal commutative subalgebra in very few algebras
Colloquium Mathematicum, Tome 147 (2017) no. 2, pp. 241-246
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
“Very few” in the title means two. We show that a unital real or complex algebra generated by a nilpotent of order two can be a maximal abelian subalgebra only in two algebras. One of them is of dimension three and the other of dimension four.
Keywords:
few title means unital real complex algebra generated nilpotent order maximal abelian subalgebra only algebras dimension three other dimension
Affiliations des auteurs :
Wiesław Żelazko 1
@article{10_4064_cm6941_6_2016,
author = {Wies{\l}aw \.Zelazko},
title = {An algebra which is a maximal commutative subalgebra in very few algebras},
journal = {Colloquium Mathematicum},
pages = {241--246},
publisher = {mathdoc},
volume = {147},
number = {2},
year = {2017},
doi = {10.4064/cm6941-6-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6941-6-2016/}
}
TY - JOUR AU - Wiesław Żelazko TI - An algebra which is a maximal commutative subalgebra in very few algebras JO - Colloquium Mathematicum PY - 2017 SP - 241 EP - 246 VL - 147 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm6941-6-2016/ DO - 10.4064/cm6941-6-2016 LA - en ID - 10_4064_cm6941_6_2016 ER -
%0 Journal Article %A Wiesław Żelazko %T An algebra which is a maximal commutative subalgebra in very few algebras %J Colloquium Mathematicum %D 2017 %P 241-246 %V 147 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm6941-6-2016/ %R 10.4064/cm6941-6-2016 %G en %F 10_4064_cm6941_6_2016
Wiesław Żelazko. An algebra which is a maximal commutative subalgebra in very few algebras. Colloquium Mathematicum, Tome 147 (2017) no. 2, pp. 241-246. doi: 10.4064/cm6941-6-2016
Cité par Sources :