Automorphisms of subshifts defined by $\mathcal {B}$-free sets of integers
Colloquium Mathematicum, Tome 147 (2017) no. 1, pp. 87-94.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that for the subshifts defined by the sets of $\mathcal {B}$-free numbers, where $\sum _{b\in \mathcal {B}}{1/b} \lt \infty $ and the elements of $\mathcal {B}$ are pairwise coprime, the set of homeomorphisms commuting with the shift $T$ is trivial, i.e. $\operatorname {Aut}\nolimits (T)=\{T^n:n\in \mathbb {Z}\}$.
DOI : 10.4064/cm6927-5-2016
Keywords: prove subshifts defined sets mathcal free numbers where sum mathcal infty elements mathcal pairwise coprime set homeomorphisms commuting shift trivial operatorname aut nolimits mathbb

Mieczysław K. Mentzen 1

1 Faculty of Mathematics and Computer Science Nicholas Copernicus University Chopina 12/18 87-100 Toruń, Poland
@article{10_4064_cm6927_5_2016,
     author = {Mieczys{\l}aw K. Mentzen},
     title = {Automorphisms of subshifts defined by $\mathcal {B}$-free sets of integers},
     journal = {Colloquium Mathematicum},
     pages = {87--94},
     publisher = {mathdoc},
     volume = {147},
     number = {1},
     year = {2017},
     doi = {10.4064/cm6927-5-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6927-5-2016/}
}
TY  - JOUR
AU  - Mieczysław K. Mentzen
TI  - Automorphisms of subshifts defined by $\mathcal {B}$-free sets of integers
JO  - Colloquium Mathematicum
PY  - 2017
SP  - 87
EP  - 94
VL  - 147
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6927-5-2016/
DO  - 10.4064/cm6927-5-2016
LA  - en
ID  - 10_4064_cm6927_5_2016
ER  - 
%0 Journal Article
%A Mieczysław K. Mentzen
%T Automorphisms of subshifts defined by $\mathcal {B}$-free sets of integers
%J Colloquium Mathematicum
%D 2017
%P 87-94
%V 147
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6927-5-2016/
%R 10.4064/cm6927-5-2016
%G en
%F 10_4064_cm6927_5_2016
Mieczysław K. Mentzen. Automorphisms of subshifts defined by $\mathcal {B}$-free sets of integers. Colloquium Mathematicum, Tome 147 (2017) no. 1, pp. 87-94. doi : 10.4064/cm6927-5-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm6927-5-2016/

Cité par Sources :