Open retractions of indecomposable continua
Colloquium Mathematicum, Tome 148 (2017) no. 2, pp. 191-194
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We show that for each continuum $X$ there exist an indecomposable continuum $Y$ which contains $X$ and an open retraction $r: Y \to X$ such that each fiber of $r$ is homeomorphic to the Cantor set. Furthermore, $Y$ is homeomorphic to the closure of a countable union of topological copies of $X$ in some continuum. This result is a strengthening of a result proved by Bellamy (1971).
Mots-clés :
each continuum there exist indecomposable continuum which contains retraction each fiber homeomorphic cantor set furthermore homeomorphic closure countable union topological copies continuum result strengthening result proved bellamy
Affiliations des auteurs :
Sumiki Fukaishi 1 ; Eiichi Matsuhashi 1
@article{10_4064_cm6912_7_2016,
author = {Sumiki Fukaishi and Eiichi Matsuhashi},
title = {Open retractions of indecomposable continua},
journal = {Colloquium Mathematicum},
pages = {191--194},
year = {2017},
volume = {148},
number = {2},
doi = {10.4064/cm6912-7-2016},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6912-7-2016/}
}
TY - JOUR AU - Sumiki Fukaishi AU - Eiichi Matsuhashi TI - Open retractions of indecomposable continua JO - Colloquium Mathematicum PY - 2017 SP - 191 EP - 194 VL - 148 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm6912-7-2016/ DO - 10.4064/cm6912-7-2016 LA - fr ID - 10_4064_cm6912_7_2016 ER -
Sumiki Fukaishi; Eiichi Matsuhashi. Open retractions of indecomposable continua. Colloquium Mathematicum, Tome 148 (2017) no. 2, pp. 191-194. doi: 10.4064/cm6912-7-2016
Cité par Sources :