Hyperplane sections of cylinders
Colloquium Mathematicum, Tome 147 (2017) no. 1, pp. 145-164.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We provide a formula to compute the volume of the intersection of a generalized cylinder with a hyperplane. Then we prove an integral inequality involving Bessel functions similar to Keith Ball’s well-known inequality. Using this inequality we obtain upper bounds for the section volume. For large radii of the cylinder we determine the maximal section.
DOI : 10.4064/cm6909-5-2016
Keywords: provide formula compute volume intersection generalized cylinder hyperplane prove integral inequality involving bessel functions similar keith ball well known inequality using inequality obtain upper bounds section volume large radii cylinder determine maximal section

Hauke Dirksen 1

1 Department of Mathematics Kiel University 24118 Kiel, Germany
@article{10_4064_cm6909_5_2016,
     author = {Hauke Dirksen},
     title = {Hyperplane sections of cylinders},
     journal = {Colloquium Mathematicum},
     pages = {145--164},
     publisher = {mathdoc},
     volume = {147},
     number = {1},
     year = {2017},
     doi = {10.4064/cm6909-5-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6909-5-2016/}
}
TY  - JOUR
AU  - Hauke Dirksen
TI  - Hyperplane sections of cylinders
JO  - Colloquium Mathematicum
PY  - 2017
SP  - 145
EP  - 164
VL  - 147
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6909-5-2016/
DO  - 10.4064/cm6909-5-2016
LA  - en
ID  - 10_4064_cm6909_5_2016
ER  - 
%0 Journal Article
%A Hauke Dirksen
%T Hyperplane sections of cylinders
%J Colloquium Mathematicum
%D 2017
%P 145-164
%V 147
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6909-5-2016/
%R 10.4064/cm6909-5-2016
%G en
%F 10_4064_cm6909_5_2016
Hauke Dirksen. Hyperplane sections of cylinders. Colloquium Mathematicum, Tome 147 (2017) no. 1, pp. 145-164. doi : 10.4064/cm6909-5-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm6909-5-2016/

Cité par Sources :