A multivariate Remez-type inequality with $\varphi$-concave weights
Colloquium Mathematicum, Tome 147 (2017) no. 2, pp. 221-240
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $\varphi:[0,\infty)\to[0,\infty)$ be an increasing
twice continuously differentiable function
with a positive power index
$\beta(\varphi):=\inf_{t \gt 0}(\varphi(t)/\varphi^\prime(t))^\prime$
and let
$f:V\to[0,\infty)$ be concave on a convex body $V\subset\mathbb R^m$.
In this paper we discuss the following Remez-type inequality
for multivariate
polynomials $P$ of degree $n$
on measurable sets $E\subseteq V$ equipped
with a $\varphi$-concave measure
$\mu(E):=\int_E\varphi(f(x))\,dx$:
$$
\|P\|_{C(V)}\le T_n\biggl(\frac{2}
{1-(1-\mu(E)/\mu(V))^{\beta(\varphi)/(1+m\beta(\varphi))}}-1\bigg)\|P\|_{C(E)},
$$
where $T_n$ is the Chebyshev polynomial of degree $n$.
In addition, we describe the classes of all
extremal measures $\mu$, bodies $V$, sets $E$, and polynomials $P$ for
this inequality.
Keywords:
varphi infty infty increasing twice continuously differentiable function positive power index beta varphi inf varphi varphi prime prime infty concave convex body subset mathbb paper discuss following remez type inequality multivariate polynomials degree measurable sets subseteq equipped varphi concave measure int varphi biggl frac beta varphi beta varphi bigg where chebyshev polynomial degree addition describe classes extremal measures bodies sets polynomials inequality
Affiliations des auteurs :
Michael I. Ganzburg  1
@article{10_4064_cm6884_7_2016,
author = {Michael I. Ganzburg},
title = {A multivariate {Remez-type} inequality with $\varphi$-concave weights},
journal = {Colloquium Mathematicum},
pages = {221--240},
year = {2017},
volume = {147},
number = {2},
doi = {10.4064/cm6884-7-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6884-7-2016/}
}
TY - JOUR AU - Michael I. Ganzburg TI - A multivariate Remez-type inequality with $\varphi$-concave weights JO - Colloquium Mathematicum PY - 2017 SP - 221 EP - 240 VL - 147 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm6884-7-2016/ DO - 10.4064/cm6884-7-2016 LA - en ID - 10_4064_cm6884_7_2016 ER -
Michael I. Ganzburg. A multivariate Remez-type inequality with $\varphi$-concave weights. Colloquium Mathematicum, Tome 147 (2017) no. 2, pp. 221-240. doi: 10.4064/cm6884-7-2016
Cité par Sources :