A multivariate Remez-type inequality with $\varphi$-concave weights
Colloquium Mathematicum, Tome 147 (2017) no. 2, pp. 221-240.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\varphi:[0,\infty)\to[0,\infty)$ be an increasing twice continuously differentiable function with a positive power index $\beta(\varphi):=\inf_{t \gt 0}(\varphi(t)/\varphi^\prime(t))^\prime$ and let $f:V\to[0,\infty)$ be concave on a convex body $V\subset\mathbb R^m$. In this paper we discuss the following Remez-type inequality for multivariate polynomials $P$ of degree $n$ on measurable sets $E\subseteq V$ equipped with a $\varphi$-concave measure $\mu(E):=\int_E\varphi(f(x))\,dx$: $$ \|P\|_{C(V)}\le T_n\biggl(\frac{2} {1-(1-\mu(E)/\mu(V))^{\beta(\varphi)/(1+m\beta(\varphi))}}-1\bigg)\|P\|_{C(E)}, $$ where $T_n$ is the Chebyshev polynomial of degree $n$. In addition, we describe the classes of all extremal measures $\mu$, bodies $V$, sets $E$, and polynomials $P$ for this inequality.
DOI : 10.4064/cm6884-7-2016
Keywords: varphi infty infty increasing twice continuously differentiable function positive power index beta varphi inf varphi varphi prime prime infty concave convex body subset mathbb paper discuss following remez type inequality multivariate polynomials degree measurable sets subseteq equipped varphi concave measure int varphi biggl frac beta varphi beta varphi bigg where chebyshev polynomial degree addition describe classes extremal measures bodies sets polynomials inequality

Michael I. Ganzburg 1

1 Department of Mathematics Hampton University Hampton, VA 23668, U.S.A.
@article{10_4064_cm6884_7_2016,
     author = {Michael I. Ganzburg},
     title = {A multivariate {Remez-type} inequality with $\varphi$-concave weights},
     journal = {Colloquium Mathematicum},
     pages = {221--240},
     publisher = {mathdoc},
     volume = {147},
     number = {2},
     year = {2017},
     doi = {10.4064/cm6884-7-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6884-7-2016/}
}
TY  - JOUR
AU  - Michael I. Ganzburg
TI  - A multivariate Remez-type inequality with $\varphi$-concave weights
JO  - Colloquium Mathematicum
PY  - 2017
SP  - 221
EP  - 240
VL  - 147
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6884-7-2016/
DO  - 10.4064/cm6884-7-2016
LA  - en
ID  - 10_4064_cm6884_7_2016
ER  - 
%0 Journal Article
%A Michael I. Ganzburg
%T A multivariate Remez-type inequality with $\varphi$-concave weights
%J Colloquium Mathematicum
%D 2017
%P 221-240
%V 147
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6884-7-2016/
%R 10.4064/cm6884-7-2016
%G en
%F 10_4064_cm6884_7_2016
Michael I. Ganzburg. A multivariate Remez-type inequality with $\varphi$-concave weights. Colloquium Mathematicum, Tome 147 (2017) no. 2, pp. 221-240. doi : 10.4064/cm6884-7-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm6884-7-2016/

Cité par Sources :