On the $k$-fold iterate of the sum of divisors function
Colloquium Mathematicum, Tome 147 (2017) no. 2, pp. 247-255.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\gamma(n)$ stand for the product of the prime factors of $n$. The index of composition $\lambda(n)$ of an integer $n\ge 2$ is defined as $\lambda(n)=\log n / \!\log \gamma(n)$ with $\lambda(1)=1$. Given an arbitrary integer $k\ge 0$ and letting $\sigma_k(n)$ be the $k$-fold iterate of the sum of divisors function, we show that, given any real number $\varepsilon \gt 0$, $\lambda(\sigma_k(n)) \lt 1+\varepsilon$ for almost all positive integers $n$.
DOI : 10.4064/cm6880-6-2016
Keywords: gamma stand product prime factors index composition lambda integer defined lambda log log gamma lambda given arbitrary integer letting sigma k fold iterate sum divisors function given real number varepsilon lambda sigma varepsilon almost positive integers

Jean-Marie De Koninck 1 ; Imre Kátai 2

1 Département de mathématiques Université Laval Québec G1V 0A6, Canada
2 Computer Algebra Department Eötvös Lorand University Pázmány Péter sétány 1/C 1117 Budapest, Hungary
@article{10_4064_cm6880_6_2016,
     author = {Jean-Marie De Koninck and Imre K\'atai},
     title = {On the $k$-fold iterate of the sum of divisors function},
     journal = {Colloquium Mathematicum},
     pages = {247--255},
     publisher = {mathdoc},
     volume = {147},
     number = {2},
     year = {2017},
     doi = {10.4064/cm6880-6-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6880-6-2016/}
}
TY  - JOUR
AU  - Jean-Marie De Koninck
AU  - Imre Kátai
TI  - On the $k$-fold iterate of the sum of divisors function
JO  - Colloquium Mathematicum
PY  - 2017
SP  - 247
EP  - 255
VL  - 147
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6880-6-2016/
DO  - 10.4064/cm6880-6-2016
LA  - en
ID  - 10_4064_cm6880_6_2016
ER  - 
%0 Journal Article
%A Jean-Marie De Koninck
%A Imre Kátai
%T On the $k$-fold iterate of the sum of divisors function
%J Colloquium Mathematicum
%D 2017
%P 247-255
%V 147
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6880-6-2016/
%R 10.4064/cm6880-6-2016
%G en
%F 10_4064_cm6880_6_2016
Jean-Marie De Koninck; Imre Kátai. On the $k$-fold iterate of the sum of divisors function. Colloquium Mathematicum, Tome 147 (2017) no. 2, pp. 247-255. doi : 10.4064/cm6880-6-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm6880-6-2016/

Cité par Sources :