Doi Hom-Hopf modules and Frobenius type properties
Colloquium Mathematicum, Tome 148 (2017) no. 1, pp. 69-85
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We continue our study of the category of Doi Hom-Hopf modules
introduced by Guo and Zhang [Colloq. Math. 143 (2016), 23–38]. Let
$(H, A, C)$ be a Doi Hom-Hopf datum. We find that the forgetful
functor $F: \widetilde{\mathscr{H}}(\mathscr{M}_k)(H)^{C}_{A}
\rightarrow \widetilde{\mathscr{H}}(\mathscr{M}_k)_{A}$ and its
adjoint form a Frobenius pair if and only if (among other equivalent
conditions) $AøC$ and $C^{\ast}øA$ are isomorphic as
$(A; C^{\ast \rm op}\mathbin{\#} A)$-bimodules.
Keywords:
continue study category doi hom hopf modules introduced guo zhang colloq math doi hom hopf datum forgetful functor widetilde mathscr mathscr rightarrow widetilde mathscr mathscr its adjoint form frobenius pair only among other equivalent conditions ast isomorphic ast mathbin bimodules
Affiliations des auteurs :
Huaxi Chen 1 ; Shuangjian Guo 2
@article{10_4064_cm6874_6_2016,
author = {Huaxi Chen and Shuangjian Guo},
title = {Doi {Hom-Hopf} modules and {Frobenius} type properties},
journal = {Colloquium Mathematicum},
pages = {69--85},
year = {2017},
volume = {148},
number = {1},
doi = {10.4064/cm6874-6-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6874-6-2016/}
}
TY - JOUR AU - Huaxi Chen AU - Shuangjian Guo TI - Doi Hom-Hopf modules and Frobenius type properties JO - Colloquium Mathematicum PY - 2017 SP - 69 EP - 85 VL - 148 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm6874-6-2016/ DO - 10.4064/cm6874-6-2016 LA - en ID - 10_4064_cm6874_6_2016 ER -
Huaxi Chen; Shuangjian Guo. Doi Hom-Hopf modules and Frobenius type properties. Colloquium Mathematicum, Tome 148 (2017) no. 1, pp. 69-85. doi: 10.4064/cm6874-6-2016
Cité par Sources :