On Lech’s limit formula for modules
Colloquium Mathematicum, Tome 148 (2017) no. 1, pp. 27-37.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $R=\bigoplus _{n=0}^{\infty } R_n$ be a standard graded algebra and $M=\bigoplus _{n=0}^{\infty } M_n$ a graded Noetherian $R$-module. The main objective of this work is to derive a Lech type formula for a sequence of homogeneous elements $a_1,\dots ,a_m$ of degree one which form a $g$-multiplicity system of $R$. We also extend to this context the well known Serre Theorem, that is, we prove that for $t\gg 0$ the $g$-multiplicity symbol $e_t(a_1,\dots ,a_m;R)$, introduced by Kirby (1987), coincides with the Buchsbaum–Rim multiplicity $e_{\rm BR}(I;R)$ of the $R_0$-module $I$ generated by $a_1,\dots ,a_m.$
DOI : 10.4064/cm6870-6-2016
Mots-clés : bigoplus infty standard graded algebra bigoplus infty graded noetherian r module main objective work derive lech type formula sequence homogeneous elements dots degree which form g multiplicity system extend context known serre theorem prove g multiplicity symbol dots introduced kirby coincides buchsbaum rim multiplicity module nbsp generated dots

R. Callejas-Bedregal 1 ; V. H. Jorge Pérez 2

1 Universidade Federal da Paraíba–DM 58.051-900, João Pessoa, PB, Brazil
2 Departament of Mathematics Universidade de São Paulo–ICMC Caixa Postal 668 13560-970, São Carlos, SP, Brazil
@article{10_4064_cm6870_6_2016,
     author = {R. Callejas-Bedregal and V. H. Jorge P\'erez},
     title = {On {Lech{\textquoteright}s} limit formula for modules},
     journal = {Colloquium Mathematicum},
     pages = {27--37},
     publisher = {mathdoc},
     volume = {148},
     number = {1},
     year = {2017},
     doi = {10.4064/cm6870-6-2016},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6870-6-2016/}
}
TY  - JOUR
AU  - R. Callejas-Bedregal
AU  - V. H. Jorge Pérez
TI  - On Lech’s limit formula for modules
JO  - Colloquium Mathematicum
PY  - 2017
SP  - 27
EP  - 37
VL  - 148
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6870-6-2016/
DO  - 10.4064/cm6870-6-2016
LA  - fr
ID  - 10_4064_cm6870_6_2016
ER  - 
%0 Journal Article
%A R. Callejas-Bedregal
%A V. H. Jorge Pérez
%T On Lech’s limit formula for modules
%J Colloquium Mathematicum
%D 2017
%P 27-37
%V 148
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6870-6-2016/
%R 10.4064/cm6870-6-2016
%G fr
%F 10_4064_cm6870_6_2016
R. Callejas-Bedregal; V. H. Jorge Pérez. On Lech’s limit formula for modules. Colloquium Mathematicum, Tome 148 (2017) no. 1, pp. 27-37. doi : 10.4064/cm6870-6-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm6870-6-2016/

Cité par Sources :