On Lech’s limit formula for modules
Colloquium Mathematicum, Tome 148 (2017) no. 1, pp. 27-37
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $R=\bigoplus _{n=0}^{\infty } R_n$ be a standard graded algebra and $M=\bigoplus _{n=0}^{\infty } M_n$ a graded Noetherian $R$-module. The main objective of this work is to derive a Lech type formula for a sequence of homogeneous elements $a_1,\dots ,a_m$ of degree one which form a $g$-multiplicity system of $R$. We also extend to this context the well known Serre Theorem, that is, we prove that for $t\gg 0$ the $g$-multiplicity symbol $e_t(a_1,\dots ,a_m;R)$, introduced by Kirby (1987), coincides with the Buchsbaum–Rim multiplicity $e_{\rm BR}(I;R)$ of the $R_0$-module $I$ generated by $a_1,\dots ,a_m.$
Mots-clés :
bigoplus infty standard graded algebra bigoplus infty graded noetherian r module main objective work derive lech type formula sequence homogeneous elements dots degree which form g multiplicity system extend context known serre theorem prove g multiplicity symbol dots introduced kirby coincides buchsbaum rim multiplicity module nbsp generated dots
Affiliations des auteurs :
R. Callejas-Bedregal 1 ; V. H. Jorge Pérez 2
@article{10_4064_cm6870_6_2016,
author = {R. Callejas-Bedregal and V. H. Jorge P\'erez},
title = {On {Lech{\textquoteright}s} limit formula for modules},
journal = {Colloquium Mathematicum},
pages = {27--37},
year = {2017},
volume = {148},
number = {1},
doi = {10.4064/cm6870-6-2016},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6870-6-2016/}
}
TY - JOUR AU - R. Callejas-Bedregal AU - V. H. Jorge Pérez TI - On Lech’s limit formula for modules JO - Colloquium Mathematicum PY - 2017 SP - 27 EP - 37 VL - 148 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm6870-6-2016/ DO - 10.4064/cm6870-6-2016 LA - fr ID - 10_4064_cm6870_6_2016 ER -
R. Callejas-Bedregal; V. H. Jorge Pérez. On Lech’s limit formula for modules. Colloquium Mathematicum, Tome 148 (2017) no. 1, pp. 27-37. doi: 10.4064/cm6870-6-2016
Cité par Sources :