Limit sets in normed linear spaces
Colloquium Mathematicum, Tome 147 (2017) no. 1, pp. 35-42
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The sets of all limit points of series with terms tending to 0 in normed linear spaces are characterized. An immediate conclusion is that a normed linear space $(X,\| \cdot \| )$ is infinite-dimensional if and only if there exists a series $\sum x_n$ of terms of $X$ with $x_n\to 0$ whose set of limit points contains exactly two different points of $X$. The last assertion could be extended to an arbitrary (greater than 1) finite number of points.
Keywords:
sets limit points series terms tending normed linear spaces characterized immediate conclusion normed linear space cdot infinite dimensional only there exists series sum terms whose set limit points contains exactly different points assertion could extended arbitrary greater finite number points
Affiliations des auteurs :
Włodzimierz J. Charatonik 1 ; Alicja Samulewicz 2 ; Roman Wituła 2
@article{10_4064_cm6868_5_2016,
author = {W{\l}odzimierz J. Charatonik and Alicja Samulewicz and Roman Witu{\l}a},
title = {Limit sets in normed linear spaces},
journal = {Colloquium Mathematicum},
pages = {35--42},
year = {2017},
volume = {147},
number = {1},
doi = {10.4064/cm6868-5-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6868-5-2016/}
}
TY - JOUR AU - Włodzimierz J. Charatonik AU - Alicja Samulewicz AU - Roman Wituła TI - Limit sets in normed linear spaces JO - Colloquium Mathematicum PY - 2017 SP - 35 EP - 42 VL - 147 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm6868-5-2016/ DO - 10.4064/cm6868-5-2016 LA - en ID - 10_4064_cm6868_5_2016 ER -
Włodzimierz J. Charatonik; Alicja Samulewicz; Roman Wituła. Limit sets in normed linear spaces. Colloquium Mathematicum, Tome 147 (2017) no. 1, pp. 35-42. doi: 10.4064/cm6868-5-2016
Cité par Sources :