Limit sets in normed linear spaces
Colloquium Mathematicum, Tome 147 (2017) no. 1, pp. 35-42.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The sets of all limit points of series with terms tending to 0 in normed linear spaces are characterized. An immediate conclusion is that a normed linear space $(X,\| \cdot \| )$ is infinite-dimensional if and only if there exists a series $\sum x_n$ of terms of $X$ with $x_n\to 0$ whose set of limit points contains exactly two different points of $X$. The last assertion could be extended to an arbitrary (greater than 1) finite number of points.
DOI : 10.4064/cm6868-5-2016
Keywords: sets limit points series terms tending normed linear spaces characterized immediate conclusion normed linear space cdot infinite dimensional only there exists series sum terms whose set limit points contains exactly different points assertion could extended arbitrary greater finite number points

Włodzimierz J. Charatonik 1 ; Alicja Samulewicz 2 ; Roman Wituła 2

1 Department of Mathematics and Statistics Missouri University of Science and Technology Rolla, MO 65409, U.S.A.
2 Institute of Mathematics Faculty of Applied Mathematics Silesian University of Technology Kaszubska 23 44-101 Gliwice, Poland
@article{10_4064_cm6868_5_2016,
     author = {W{\l}odzimierz J. Charatonik and Alicja Samulewicz and Roman Witu{\l}a},
     title = {Limit sets in normed linear spaces},
     journal = {Colloquium Mathematicum},
     pages = {35--42},
     publisher = {mathdoc},
     volume = {147},
     number = {1},
     year = {2017},
     doi = {10.4064/cm6868-5-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6868-5-2016/}
}
TY  - JOUR
AU  - Włodzimierz J. Charatonik
AU  - Alicja Samulewicz
AU  - Roman Wituła
TI  - Limit sets in normed linear spaces
JO  - Colloquium Mathematicum
PY  - 2017
SP  - 35
EP  - 42
VL  - 147
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6868-5-2016/
DO  - 10.4064/cm6868-5-2016
LA  - en
ID  - 10_4064_cm6868_5_2016
ER  - 
%0 Journal Article
%A Włodzimierz J. Charatonik
%A Alicja Samulewicz
%A Roman Wituła
%T Limit sets in normed linear spaces
%J Colloquium Mathematicum
%D 2017
%P 35-42
%V 147
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6868-5-2016/
%R 10.4064/cm6868-5-2016
%G en
%F 10_4064_cm6868_5_2016
Włodzimierz J. Charatonik; Alicja Samulewicz; Roman Wituła. Limit sets in normed linear spaces. Colloquium Mathematicum, Tome 147 (2017) no. 1, pp. 35-42. doi : 10.4064/cm6868-5-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm6868-5-2016/

Cité par Sources :