Symmetries and ergodic properties in quantum probability
Colloquium Mathematicum, Tome 149 (2017) no. 1, pp. 1-20.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We deal with the general structure of (noncommutative) stochastic processes by using the standard techniques of operator algebras. Any stochastic process is associated to a state on a universal object, i.e. the free product $C^*$-algebra, in a natural way. In this setting, one recovers the classical (i.e. commutative) probability scheme and many others, like those associated to the monotone, boolean and $q$-deformed canonical commutation relations including the Bose/Fermi and Boltzmann cases. Natural symmetries like stationarity and exchangeability, as well as the ergodic properties of the stochastic processes are reviewed in detail for many interesting cases arising from quantum physics and probability.
DOI : 10.4064/cm6863-9-2016
Keywords: general structure noncommutative stochastic processes using standard techniques operator algebras stochastic process associated state universal object product * algebra natural setting recovers classical commutative probability scheme many others those associated monotone boolean q deformed canonical commutation relations including bose fermi boltzmann cases natural symmetries stationarity exchangeability ergodic properties stochastic processes reviewed detail many interesting cases arising quantum physics probability

Vitonofrio Crismale 1 ; Francesco Fidaleo 2

1 Dipartimento di Matematica Università degli studi di Bari Via E. Orabona, 4 70125 Bari, Italy
2 Dipartimento di Matematica Università degli studi di Roma Tor Vergata Via della Ricerca Scientifica 1 00133 Roma, Italy
@article{10_4064_cm6863_9_2016,
     author = {Vitonofrio Crismale and Francesco Fidaleo},
     title = {Symmetries and ergodic properties in quantum probability},
     journal = {Colloquium Mathematicum},
     pages = {1--20},
     publisher = {mathdoc},
     volume = {149},
     number = {1},
     year = {2017},
     doi = {10.4064/cm6863-9-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6863-9-2016/}
}
TY  - JOUR
AU  - Vitonofrio Crismale
AU  - Francesco Fidaleo
TI  - Symmetries and ergodic properties in quantum probability
JO  - Colloquium Mathematicum
PY  - 2017
SP  - 1
EP  - 20
VL  - 149
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6863-9-2016/
DO  - 10.4064/cm6863-9-2016
LA  - en
ID  - 10_4064_cm6863_9_2016
ER  - 
%0 Journal Article
%A Vitonofrio Crismale
%A Francesco Fidaleo
%T Symmetries and ergodic properties in quantum probability
%J Colloquium Mathematicum
%D 2017
%P 1-20
%V 149
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6863-9-2016/
%R 10.4064/cm6863-9-2016
%G en
%F 10_4064_cm6863_9_2016
Vitonofrio Crismale; Francesco Fidaleo. Symmetries and ergodic properties in quantum probability. Colloquium Mathematicum, Tome 149 (2017) no. 1, pp. 1-20. doi : 10.4064/cm6863-9-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm6863-9-2016/

Cité par Sources :