Combinatorial identities and trigonometric inequalities
Colloquium Mathematicum, Tome 145 (2016) no. 2, pp. 291-305.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The aim of this paper is threefold: (i) We offer short and elementary new proofs for $$\displaylines{\begin{aligned} (*)\hskip82pt\sum_{k=0}^{n} 2^{n-k} \biggl({n\atop k}\biggr)\biggl({m\atop k}\biggr) ={}\sum_{k=0}^n \biggl({n\atop k}\biggr)\biggl({m+k\atop k}\biggr),\\ (**)\hskip55pt \sum_{k=0}^n \biggl({\alpha+k-1\atop k}\biggr)(z+1)^k={} \alpha \biggl({\alpha+n\atop n}\biggr)\sum_{k=0}^n\biggl({n\atop k}\biggr)\frac{z^k}{\alpha+k}. \end{aligned} } $$ The first identity was published by Brereton et al. in 2011 and the second one extends a result provided by the same authors. (ii) We present $q$-analogues of $(*)$ and $(**)$. (iii) We use $(**)$ to derive identities and inequalities for trigonometric polynomials. Among other results, we show that $$ \sin(t)+ \sum_{k=2}^n c (c+1) \cdots (c+k-2) \frac{\sin(kt)}{k! } \gt 0 \quad\ {(c\in\mathbb{R})} $$ for all $n\in\mathbb{N}$ and $t\in (0,\pi)$ if and only if $c\in [-1,1]$. This provides a new extension of the classical Fejér–Jackson inequality.
DOI : 10.4064/cm6859-5-2016
Keywords: paper threefold offer short elementary proofs displaylines begin aligned * hskip sum n k biggl atop biggr biggl atop biggr sum biggl atop biggr biggl atop biggr ** hskip sum biggl alpha k atop biggr alpha biggl alpha atop biggr sum biggl atop biggr frac alpha end aligned first identity published brereton second extends result provided authors present q analogues * ** iii ** derive identities inequalities trigonometric polynomials among other results sin sum cdots k frac sin quad mathbb mathbb only provides extension classical fej jackson inequality

Horst Alzer 1 ; Man Kam Kwong 2 ; Hao Pan 3

1 Morsbacher Str. 10 51545 Waldbröl, Germany
2 Department of Applied Mathematics The Hong Kong Polytechnic University Hunghom, Hong Kong
3 Department of Mathematics Nanjing University Nanjing 210093, People’s Republic of China
@article{10_4064_cm6859_5_2016,
     author = {Horst Alzer and Man Kam Kwong and Hao Pan},
     title = {Combinatorial identities and trigonometric inequalities},
     journal = {Colloquium Mathematicum},
     pages = {291--305},
     publisher = {mathdoc},
     volume = {145},
     number = {2},
     year = {2016},
     doi = {10.4064/cm6859-5-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6859-5-2016/}
}
TY  - JOUR
AU  - Horst Alzer
AU  - Man Kam Kwong
AU  - Hao Pan
TI  - Combinatorial identities and trigonometric inequalities
JO  - Colloquium Mathematicum
PY  - 2016
SP  - 291
EP  - 305
VL  - 145
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6859-5-2016/
DO  - 10.4064/cm6859-5-2016
LA  - en
ID  - 10_4064_cm6859_5_2016
ER  - 
%0 Journal Article
%A Horst Alzer
%A Man Kam Kwong
%A Hao Pan
%T Combinatorial identities and trigonometric inequalities
%J Colloquium Mathematicum
%D 2016
%P 291-305
%V 145
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6859-5-2016/
%R 10.4064/cm6859-5-2016
%G en
%F 10_4064_cm6859_5_2016
Horst Alzer; Man Kam Kwong; Hao Pan. Combinatorial identities and trigonometric inequalities. Colloquium Mathematicum, Tome 145 (2016) no. 2, pp. 291-305. doi : 10.4064/cm6859-5-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm6859-5-2016/

Cité par Sources :