Combinatorial identities and trigonometric inequalities
Colloquium Mathematicum, Tome 145 (2016) no. 2, pp. 291-305
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The aim of this paper is threefold:
(i) We offer short and elementary new proofs for $$\displaylines{\begin{aligned}
(*)\hskip82pt\sum_{k=0}^{n}
2^{n-k} \biggl({n\atop k}\biggr)\biggl({m\atop k}\biggr)
={}\sum_{k=0}^n \biggl({n\atop k}\biggr)\biggl({m+k\atop k}\biggr),\\
(**)\hskip55pt \sum_{k=0}^n \biggl({\alpha+k-1\atop k}\biggr)(z+1)^k={}
\alpha \biggl({\alpha+n\atop n}\biggr)\sum_{k=0}^n\biggl({n\atop k}\biggr)\frac{z^k}{\alpha+k}.
\end{aligned}
}
$$
The first identity
was published by
Brereton et al.
in 2011 and the second one extends a result provided by the same authors.
(ii) We present $q$-analogues of $(*)$ and $(**)$.
(iii)
We use $(**)$ to derive identities and inequalities for trigonometric polynomials. Among other results, we show that $$
\sin(t)+
\sum_{k=2}^n c (c+1) \cdots (c+k-2)
\frac{\sin(kt)}{k! } \gt 0
\quad\ {(c\in\mathbb{R})}
$$ for all $n\in\mathbb{N}$ and $t\in (0,\pi)$ if and only if $c\in [-1,1]$.
This provides a new extension of the classical Fejér–Jackson inequality.
Keywords:
paper threefold offer short elementary proofs displaylines begin aligned * hskip sum n k biggl atop biggr biggl atop biggr sum biggl atop biggr biggl atop biggr ** hskip sum biggl alpha k atop biggr alpha biggl alpha atop biggr sum biggl atop biggr frac alpha end aligned first identity published brereton second extends result provided authors present q analogues * ** iii ** derive identities inequalities trigonometric polynomials among other results sin sum cdots k frac sin quad mathbb mathbb only provides extension classical fej jackson inequality
Affiliations des auteurs :
Horst Alzer 1 ; Man Kam Kwong 2 ; Hao Pan 3
@article{10_4064_cm6859_5_2016,
author = {Horst Alzer and Man Kam Kwong and Hao Pan},
title = {Combinatorial identities and trigonometric inequalities},
journal = {Colloquium Mathematicum},
pages = {291--305},
publisher = {mathdoc},
volume = {145},
number = {2},
year = {2016},
doi = {10.4064/cm6859-5-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6859-5-2016/}
}
TY - JOUR AU - Horst Alzer AU - Man Kam Kwong AU - Hao Pan TI - Combinatorial identities and trigonometric inequalities JO - Colloquium Mathematicum PY - 2016 SP - 291 EP - 305 VL - 145 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm6859-5-2016/ DO - 10.4064/cm6859-5-2016 LA - en ID - 10_4064_cm6859_5_2016 ER -
%0 Journal Article %A Horst Alzer %A Man Kam Kwong %A Hao Pan %T Combinatorial identities and trigonometric inequalities %J Colloquium Mathematicum %D 2016 %P 291-305 %V 145 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm6859-5-2016/ %R 10.4064/cm6859-5-2016 %G en %F 10_4064_cm6859_5_2016
Horst Alzer; Man Kam Kwong; Hao Pan. Combinatorial identities and trigonometric inequalities. Colloquium Mathematicum, Tome 145 (2016) no. 2, pp. 291-305. doi: 10.4064/cm6859-5-2016
Cité par Sources :