On $n$-absorbing rings and ideals
Colloquium Mathematicum, Tome 147 (2017) no. 2, pp. 265-273.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A proper ideal $I$ of a commutative ring $R$ is $n$-absorbing (resp. strongly $n$-absorbing) if for all elements (resp. ideals) $a_{1},\ldots ,a_{n+1}$ of $R/I$, $a_{1}\cdots a_{n+1}=0$ implies that the product of some $n$ of the $a_{i}$ is $0$. It was conjectured by Anderson and Badawi that if $I$ is an $n$-absorbing ideal of $R$ then (1) $I$ is strongly $n$-absorbing, (2) $I[x]$ is an $n$-absorbing ideal of $R[x]$, and (3) $\mathrm {Rad}(I)^{n}\subseteq I$. We prove that these conjectures hold in various classes of rings, thus extending several known results on $n$-absorbing ideals. As a by-product, we show that (2) implies (1).
DOI : 10.4064/cm6844-5-2016
Keywords: proper ideal commutative ring n absorbing resp strongly n absorbing elements resp ideals ldots cdots implies product conjectured anderson badawi n absorbing ideal nbsp strongly n absorbing nbsp n absorbing ideal nbsp mathrm rad subseteq prove these conjectures various classes rings extending several known results n absorbing ideals by product implies nbsp

Abdallah Laradji 1

1 Department of Mathematics & Statistics King Fahd University of Petroleum & Minerals Dhahran 31261, Saudi Arabia
@article{10_4064_cm6844_5_2016,
     author = {Abdallah Laradji},
     title = {On $n$-absorbing rings and ideals},
     journal = {Colloquium Mathematicum},
     pages = {265--273},
     publisher = {mathdoc},
     volume = {147},
     number = {2},
     year = {2017},
     doi = {10.4064/cm6844-5-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6844-5-2016/}
}
TY  - JOUR
AU  - Abdallah Laradji
TI  - On $n$-absorbing rings and ideals
JO  - Colloquium Mathematicum
PY  - 2017
SP  - 265
EP  - 273
VL  - 147
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6844-5-2016/
DO  - 10.4064/cm6844-5-2016
LA  - en
ID  - 10_4064_cm6844_5_2016
ER  - 
%0 Journal Article
%A Abdallah Laradji
%T On $n$-absorbing rings and ideals
%J Colloquium Mathematicum
%D 2017
%P 265-273
%V 147
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6844-5-2016/
%R 10.4064/cm6844-5-2016
%G en
%F 10_4064_cm6844_5_2016
Abdallah Laradji. On $n$-absorbing rings and ideals. Colloquium Mathematicum, Tome 147 (2017) no. 2, pp. 265-273. doi : 10.4064/cm6844-5-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm6844-5-2016/

Cité par Sources :