When the flat and Gorenstein flat dimensions coincide?
Colloquium Mathematicum, Tome 147 (2017) no. 1, pp. 77-85.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is well known that, given a ring $R$, if $M$ is an $R$-module such that pd$_R(M) \lt \infty $, then Gid$_R(M)= \mathrm {id}_R(M)$ (Holm, 2004). This shows in particular that if $R$ is a Noetherian ring such that Gid$(R) \lt \infty $, then $R$ is Gorenstein. Dually, if $M$ is an $R$-module such that $\mathrm {id}_R(M) \lt \infty $, then Gpd$_R(M)=$ pd$_R(M)$ (Holm, 2004). Regarding the Gorenstein flat dimension, there have been no appropriate analogs of these two theorems. The unique result, in this vein, states, under the strong hypothesis of $R$ being a left and right coherent ring with finite right finitistic projective dimension, that Gfd$_R(M)= \mathrm {fd}_R(M)$ for any $R$-module $M$ such that $\mathrm {id}_R(M) \lt \infty $ (Holm, 2004). We give the appropriate analogs of the above two formulas for the Gorenstein flat dimension. Actually, in the general setting, we prove that if $M$ is an $R$-module admitting a short flat resolution $0\rightarrow K\rightarrow F_{n-1}\rightarrow F_{n-2}\rightarrow \cdots \rightarrow F_0\rightarrow M\rightarrow 0$ such that $K$ is Gorenstein flat and fd$_R(M^+) \lt \infty $, then $K$ is flat and Gfd$_R(M)=$ fd$_R(M)$, where $A^+$ stands for the Pontryagin dual Hom$_{\mathbb {Z}}(A,{\mathbb {Q}/\mathbb {Z}})$ of a module $A$. This implies, in particular, that if $R$ is a left GF-closed ring, then Gfd$_R(M)=$ fd$_R(M)$ for any $R$-module $M$ such that fd$_R(M^+) \lt \infty $. Dually, we prove that if $R$ is left GF-closed, then Gfd$_R(N^+)=$ fd$_R(N^+)$ for any $R$-module $N$ such that fd$_R(N) \lt \infty $.
DOI : 10.4064/cm6833-3-2016
Keywords: known given ring r module infty gid mathrm holm shows particular noetherian ring gid infty gorenstein dually r module mathrm infty gpd holm regarding gorenstein flat dimension there have appropriate analogs these theorems unique result vein states under strong hypothesis being right coherent ring finite right finitistic projective dimension gfd mathrm r module mathrm infty holm appropriate analogs above formulas gorenstein flat dimension actually general setting prove r module admitting short flat resolution rightarrow rightarrow n rightarrow n rightarrow cdots rightarrow rightarrow rightarrow gorenstein flat infty flat gfd where stands pontryagin dual hom mathbb mathbb mathbb module nbsp implies particular gf closed ring gfd r module infty dually prove gf closed gfd r module infty

Samir Bouchiba 1

1 Department of Mathematics Faculty of Sciences University Moulay Ismail 50000 Meknes, Morocco
@article{10_4064_cm6833_3_2016,
     author = {Samir Bouchiba},
     title = {When the flat and {Gorenstein} flat dimensions coincide?},
     journal = {Colloquium Mathematicum},
     pages = {77--85},
     publisher = {mathdoc},
     volume = {147},
     number = {1},
     year = {2017},
     doi = {10.4064/cm6833-3-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6833-3-2016/}
}
TY  - JOUR
AU  - Samir Bouchiba
TI  - When the flat and Gorenstein flat dimensions coincide?
JO  - Colloquium Mathematicum
PY  - 2017
SP  - 77
EP  - 85
VL  - 147
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6833-3-2016/
DO  - 10.4064/cm6833-3-2016
LA  - en
ID  - 10_4064_cm6833_3_2016
ER  - 
%0 Journal Article
%A Samir Bouchiba
%T When the flat and Gorenstein flat dimensions coincide?
%J Colloquium Mathematicum
%D 2017
%P 77-85
%V 147
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6833-3-2016/
%R 10.4064/cm6833-3-2016
%G en
%F 10_4064_cm6833_3_2016
Samir Bouchiba. When the flat and Gorenstein flat dimensions coincide?. Colloquium Mathematicum, Tome 147 (2017) no. 1, pp. 77-85. doi : 10.4064/cm6833-3-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm6833-3-2016/

Cité par Sources :