Homogeneous Rota–Baxter operators on the $3$-Lie algebra $A_{\omega }$
Colloquium Mathematicum, Tome 148 (2017) no. 2, pp. 195-213.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study homogeneous Rota–Baxter operators with weight zero on an infinite-dimensional simple $3$-Lie algebra $A_{\omega }$ over a field $ F$ ($\mathop {\rm ch}\nolimits F=0$), which is constructed from an associative commutative algebra $A$ with a derivation $\varDelta $ and an involution $\omega $ (Lemma 2.4). A homogeneous Rota–Baxter operator on $A_{\omega }$ is a linear map $R$ of $A_{\omega }$ satisfying $R(L_m)=f(m)L_m$ for all generators of $A_{\omega }$, where $f : \mathbb Z \rightarrow F$ is a function. We prove that $R$ is a homogeneous Rota–Baxter operator on $A_{\omega }$ if and only if $R$ is one of the five possibilities $R_{0_1}$, $R_{0_2}$, $R_{0_3}$, $R_{0_4}$ and $R_{0_5}$, described in Theorems 3.2, 3.12, 3.15, 3.19 and 3.21. Using the operators $R_{0_i}$, we construct new $3$-Lie algebras $(A, [ \,,\, ,\, ]_i)$ for $1\leq i\leq 5$, such that $R_{0_i}$ is a homogeneous Rota–Baxter operator on the $3$-Lie algebra $(A, [\, ,\, ,\, ]_i)$.
DOI : 10.4064/cm6829-2-2016
Keywords: study homogeneous rota baxter operators weight zero infinite dimensional simple lie algebra omega field mathop nolimits which constructed associative commutative algebra derivation vardelta involution nbsp omega lemma nbsp homogeneous rota baxter operator omega linear map omega satisfying m generators omega where mathbb rightarrow function prove homogeneous rota baxter operator omega only five possibilities described theorems using operators construct lie algebras leq leq homogeneous rota baxter operator lie algebra

Ruipu Bai 1 ; Yinghua Zhang 1

1 College of Mathematics and Information Science Hebei University Baoding 071002, China
@article{10_4064_cm6829_2_2016,
     author = {Ruipu Bai and Yinghua Zhang},
     title = {Homogeneous {Rota{\textendash}Baxter} operators on the $3${-Lie} algebra $A_{\omega }$},
     journal = {Colloquium Mathematicum},
     pages = {195--213},
     publisher = {mathdoc},
     volume = {148},
     number = {2},
     year = {2017},
     doi = {10.4064/cm6829-2-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6829-2-2016/}
}
TY  - JOUR
AU  - Ruipu Bai
AU  - Yinghua Zhang
TI  - Homogeneous Rota–Baxter operators on the $3$-Lie algebra $A_{\omega }$
JO  - Colloquium Mathematicum
PY  - 2017
SP  - 195
EP  - 213
VL  - 148
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6829-2-2016/
DO  - 10.4064/cm6829-2-2016
LA  - en
ID  - 10_4064_cm6829_2_2016
ER  - 
%0 Journal Article
%A Ruipu Bai
%A Yinghua Zhang
%T Homogeneous Rota–Baxter operators on the $3$-Lie algebra $A_{\omega }$
%J Colloquium Mathematicum
%D 2017
%P 195-213
%V 148
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6829-2-2016/
%R 10.4064/cm6829-2-2016
%G en
%F 10_4064_cm6829_2_2016
Ruipu Bai; Yinghua Zhang. Homogeneous Rota–Baxter operators on the $3$-Lie algebra $A_{\omega }$. Colloquium Mathematicum, Tome 148 (2017) no. 2, pp. 195-213. doi : 10.4064/cm6829-2-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm6829-2-2016/

Cité par Sources :