Riemannian manifolds with harmonic curvature
Colloquium Mathematicum, Tome 145 (2016) no. 2, pp. 251-257.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove an integral inequality for compact $n$-dimensional manifolds with harmonic curvature tensor and positive scalar curvature, generalizing a recent result of Catino that deals with the conformally flat case, and classify those manifolds for which our inequality is an equality: they are either Einstein, $\mathbb {S}^1\times \mathbb {S}^{n-1}$ with the product metric, or $\mathbb {S}^1\times \mathbb {S}^{n-1}$ with a rotationally symmetric Derdziński metric.
DOI : 10.4064/cm6826-4-2016
Keywords: prove integral inequality compact n dimensional manifolds harmonic curvature tensor positive scalar curvature generalizing recent result catino deals conformally flat classify those manifolds which inequality equality either einstein mathbb times mathbb n product metric mathbb times mathbb n rotationally symmetric derdzi ski metric

Guangyue Huang 1 ; Bingqing Ma 2

1 College of Mathematics and Information Science Henan Normal University 453007 Xinxiang, P.R. China and Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control
2 College of Mathematics and Information Science Henan Normal University 453007 Xinxiang, P.R. China
@article{10_4064_cm6826_4_2016,
     author = {Guangyue Huang and Bingqing Ma},
     title = {Riemannian manifolds with harmonic curvature},
     journal = {Colloquium Mathematicum},
     pages = {251--257},
     publisher = {mathdoc},
     volume = {145},
     number = {2},
     year = {2016},
     doi = {10.4064/cm6826-4-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6826-4-2016/}
}
TY  - JOUR
AU  - Guangyue Huang
AU  - Bingqing Ma
TI  - Riemannian manifolds with harmonic curvature
JO  - Colloquium Mathematicum
PY  - 2016
SP  - 251
EP  - 257
VL  - 145
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6826-4-2016/
DO  - 10.4064/cm6826-4-2016
LA  - en
ID  - 10_4064_cm6826_4_2016
ER  - 
%0 Journal Article
%A Guangyue Huang
%A Bingqing Ma
%T Riemannian manifolds with harmonic curvature
%J Colloquium Mathematicum
%D 2016
%P 251-257
%V 145
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6826-4-2016/
%R 10.4064/cm6826-4-2016
%G en
%F 10_4064_cm6826_4_2016
Guangyue Huang; Bingqing Ma. Riemannian manifolds with harmonic curvature. Colloquium Mathematicum, Tome 145 (2016) no. 2, pp. 251-257. doi : 10.4064/cm6826-4-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm6826-4-2016/

Cité par Sources :