A non-commutative Banach algebra whose maximal commutative subalgebras are all mutually isomorphic
Colloquium Mathematicum, Tome 146 (2017) no. 1, pp. 47-51.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The algebra as in the title is constructed as a quotient of the semigroup algebra of the discrete free semigroup with a countable set of generators.
DOI : 10.4064/cm6811-2-2016
Keywords: algebra title constructed quotient semigroup algebra discrete semigroup countable set generators

Wiesław Żelazko 1

1 Institute of Mathematics Polish Academy of Sciences Śniadeckich 8 00-656 Warszawa, Poland
@article{10_4064_cm6811_2_2016,
     author = {Wies{\l}aw \.Zelazko},
     title = {A non-commutative {Banach} algebra whose maximal commutative subalgebras are all mutually isomorphic},
     journal = {Colloquium Mathematicum},
     pages = {47--51},
     publisher = {mathdoc},
     volume = {146},
     number = {1},
     year = {2017},
     doi = {10.4064/cm6811-2-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6811-2-2016/}
}
TY  - JOUR
AU  - Wiesław Żelazko
TI  - A non-commutative Banach algebra whose maximal commutative subalgebras are all mutually isomorphic
JO  - Colloquium Mathematicum
PY  - 2017
SP  - 47
EP  - 51
VL  - 146
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6811-2-2016/
DO  - 10.4064/cm6811-2-2016
LA  - en
ID  - 10_4064_cm6811_2_2016
ER  - 
%0 Journal Article
%A Wiesław Żelazko
%T A non-commutative Banach algebra whose maximal commutative subalgebras are all mutually isomorphic
%J Colloquium Mathematicum
%D 2017
%P 47-51
%V 146
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6811-2-2016/
%R 10.4064/cm6811-2-2016
%G en
%F 10_4064_cm6811_2_2016
Wiesław Żelazko. A non-commutative Banach algebra whose maximal commutative subalgebras are all mutually isomorphic. Colloquium Mathematicum, Tome 146 (2017) no. 1, pp. 47-51. doi : 10.4064/cm6811-2-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm6811-2-2016/

Cité par Sources :