On split regular Hom-Lie color algebras
Colloquium Mathematicum, Tome 146 (2017) no. 1, pp. 143-155
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We introduce the class of split regular Hom-Lie color algebras as a natural generalization of split Lie color algebras. By developing techniques of connections of roots for this kind of algebras, we show that every split regular Hom-Lie color algebra $L$ is of the form $L = U + \sum _{[j] \in \varLambda /\!\sim }I_{[j]}$ with $U$ a subspace of an abelian graded subalgebra $H$ and any $I_{[j]}$ a well-described ideal of $L$, satisfying $[I_{[j]}, I_{[k]}] = 0$ if $[j]\not =[k]$. Under certain conditions, in the case of $L$ being of maximal length, the simplicity of the algebra is characterized.
Keywords:
introduce class split regular hom lie color algebras natural generalization split lie color algebras developing techniques connections roots kind algebras every split regular hom lie color algebra form sum varlambda sim subspace abelian graded subalgebra well described ideal satisfying under certain conditions being maximal length simplicity algebra characterized
Affiliations des auteurs :
Yan Cao 1 ; Liangyun Chen 2
@article{10_4064_cm6769_12_2015,
author = {Yan Cao and Liangyun Chen},
title = {On split regular {Hom-Lie} color algebras},
journal = {Colloquium Mathematicum},
pages = {143--155},
publisher = {mathdoc},
volume = {146},
number = {1},
year = {2017},
doi = {10.4064/cm6769-12-2015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6769-12-2015/}
}
TY - JOUR AU - Yan Cao AU - Liangyun Chen TI - On split regular Hom-Lie color algebras JO - Colloquium Mathematicum PY - 2017 SP - 143 EP - 155 VL - 146 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm6769-12-2015/ DO - 10.4064/cm6769-12-2015 LA - en ID - 10_4064_cm6769_12_2015 ER -
Yan Cao; Liangyun Chen. On split regular Hom-Lie color algebras. Colloquium Mathematicum, Tome 146 (2017) no. 1, pp. 143-155. doi: 10.4064/cm6769-12-2015
Cité par Sources :