{\it RD}-injectivity of tensor products of modules
Colloquium Mathematicum, Tome 145 (2016) no. 2, pp. 167-177
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A classical question due to Yoneda is, “When is the tensor product of any two injective modules injective?” Enochs and Jenda gave a complete and explicit answer to this question in 1991. Since $RD$-injective modules are a generalization of injective modules, it is natural to ask whether the tensor product of any two $RD$-injective modules is $RD$-injective. In this paper we deal with this question.
Keywords:
classical question due yoneda tensor product injective modules injective enochs jenda gave complete explicit answer question since rd injective modules generalization injective modules natural ask whether tensor product rd injective modules rd injective paper question
Affiliations des auteurs :
Ali Moradzadeh-Dehkordi 1 ; Ali Zaghian 2
@article{10_4064_cm6747_1_2016,
author = {Ali Moradzadeh-Dehkordi and Ali Zaghian},
title = {{\it {RD}-injectivity} of tensor products of modules},
journal = {Colloquium Mathematicum},
pages = {167--177},
publisher = {mathdoc},
volume = {145},
number = {2},
year = {2016},
doi = {10.4064/cm6747-1-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6747-1-2016/}
}
TY - JOUR
AU - Ali Moradzadeh-Dehkordi
AU - Ali Zaghian
TI - {\it RD}-injectivity of tensor products of modules
JO - Colloquium Mathematicum
PY - 2016
SP - 167
EP - 177
VL - 145
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/cm6747-1-2016/
DO - 10.4064/cm6747-1-2016
LA - en
ID - 10_4064_cm6747_1_2016
ER -
%0 Journal Article
%A Ali Moradzadeh-Dehkordi
%A Ali Zaghian
%T {\it RD}-injectivity of tensor products of modules
%J Colloquium Mathematicum
%D 2016
%P 167-177
%V 145
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6747-1-2016/
%R 10.4064/cm6747-1-2016
%G en
%F 10_4064_cm6747_1_2016
Ali Moradzadeh-Dehkordi; Ali Zaghian. {\it RD}-injectivity of tensor products of modules. Colloquium Mathematicum, Tome 145 (2016) no. 2, pp. 167-177. doi: 10.4064/cm6747-1-2016
Cité par Sources :