On some universal sums of generalized polygonal numbers
Colloquium Mathematicum, Tome 145 (2016) no. 1, pp. 149-155.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For $m=3,4,\ldots $ those $p_m(x)=(m-2)x(x-1)/2+x$ with $x\in {\mathbb Z}$ are called generalized $m$-gonal numbers. Sun (2015) studied for what values of positive integers $a,b,c$ the sum $ap_5+bp_5+cp_5$ is universal over $\mathbb Z$ (i.e., any $n\in {\mathbb N}=\{0,1,2,\ldots \}$ has the form $ap_5(x)+bp_5(y)+cp_5(z)$ with $x,y,z\in {\mathbb Z}$). We prove that $p_5+bp_5+3p_5$ $(b=1,2,3,4,9)$ and $p_5+2p_5+6p_5$ are universal over $\mathbb Z$, as conjectured by Sun. Sun also conjectured that any $n\in {\mathbb N}$ can be written as $p_3(x)+p_5(y)+p_{11}(z)$ and $3p_3(x)+p_5(y)+p_7(z)$ with $x,y,z\in {\mathbb N}$; in contrast, we show that $p_3+p_5+p_{11}$ and $3p_3+p_5+p_7$ are universal over $\mathbb Z$. Our proofs are essentially elementary and hence suitable for general readers.
DOI : 10.4064/cm6742-3-2016
Keywords: ldots those m x mathbb called generalized m gonal numbers sun studied what values positive integers sum universal mathbb mathbb ldots has form mathbb prove nbsp universal mathbb conjectured sun sun conjectured mathbb written mathbb contrast universal mathbb proofs essentially elementary hence suitable general readers

Fan Ge 1 ; Zhi-Wei Sun 2

1 Department of Mathematics University of Rochester Rochester, NY 14627, U.S.A.
2 Department of Mathematics Nanjing University Nanjing 210093, People’s Republic of China
@article{10_4064_cm6742_3_2016,
     author = {Fan Ge and Zhi-Wei Sun},
     title = {On some universal sums of generalized polygonal numbers},
     journal = {Colloquium Mathematicum},
     pages = {149--155},
     publisher = {mathdoc},
     volume = {145},
     number = {1},
     year = {2016},
     doi = {10.4064/cm6742-3-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6742-3-2016/}
}
TY  - JOUR
AU  - Fan Ge
AU  - Zhi-Wei Sun
TI  - On some universal sums of generalized polygonal numbers
JO  - Colloquium Mathematicum
PY  - 2016
SP  - 149
EP  - 155
VL  - 145
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6742-3-2016/
DO  - 10.4064/cm6742-3-2016
LA  - en
ID  - 10_4064_cm6742_3_2016
ER  - 
%0 Journal Article
%A Fan Ge
%A Zhi-Wei Sun
%T On some universal sums of generalized polygonal numbers
%J Colloquium Mathematicum
%D 2016
%P 149-155
%V 145
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6742-3-2016/
%R 10.4064/cm6742-3-2016
%G en
%F 10_4064_cm6742_3_2016
Fan Ge; Zhi-Wei Sun. On some universal sums of generalized polygonal numbers. Colloquium Mathematicum, Tome 145 (2016) no. 1, pp. 149-155. doi : 10.4064/cm6742-3-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm6742-3-2016/

Cité par Sources :