Canonical number systems over imaginary quadratic Euclidean domains
Colloquium Mathematicum, Tome 146 (2017) no. 2, pp. 165-186
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We investigate canonical number systems over imaginary quadratic Euclidean domains. We define a canonical digit set in a uniform way. Linear ECNS polynomials are characterized completely. We prove that for every degree there are infinitely many ECNS polynomials. As a byproduct we give a sufficient condition for a polynomial to be symmetric-CNS.
Keywords:
investigate canonical number systems imaginary quadratic euclidean domains define canonical digit set uniform linear ecns polynomials characterized completely prove every degree there infinitely many ecns polynomials byproduct sufficient condition polynomial symmetric cns
Affiliations des auteurs :
Attila Pethő 1 ; Péter Varga 2
@article{10_4064_cm6728_12_2015,
author = {Attila Peth\H{o} and P\'eter Varga},
title = {Canonical number systems over imaginary quadratic {Euclidean} domains},
journal = {Colloquium Mathematicum},
pages = {165--186},
publisher = {mathdoc},
volume = {146},
number = {2},
year = {2017},
doi = {10.4064/cm6728-12-2015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6728-12-2015/}
}
TY - JOUR AU - Attila Pethő AU - Péter Varga TI - Canonical number systems over imaginary quadratic Euclidean domains JO - Colloquium Mathematicum PY - 2017 SP - 165 EP - 186 VL - 146 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm6728-12-2015/ DO - 10.4064/cm6728-12-2015 LA - en ID - 10_4064_cm6728_12_2015 ER -
%0 Journal Article %A Attila Pethő %A Péter Varga %T Canonical number systems over imaginary quadratic Euclidean domains %J Colloquium Mathematicum %D 2017 %P 165-186 %V 146 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm6728-12-2015/ %R 10.4064/cm6728-12-2015 %G en %F 10_4064_cm6728_12_2015
Attila Pethő; Péter Varga. Canonical number systems over imaginary quadratic Euclidean domains. Colloquium Mathematicum, Tome 146 (2017) no. 2, pp. 165-186. doi: 10.4064/cm6728-12-2015
Cité par Sources :