New isolated toughness condition for fractional $(g,f,n)$-critical graphs
Colloquium Mathematicum, Tome 147 (2017) no. 1, pp. 55-65.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $i(G)$ be the number of isolated vertices in a graph $G$. The isolated toughness of $G$ is defined as $I(G)=\infty $ if $G$ is complete, and $I(G)=\operatorname{min}\{|S|/i(G-S) : S\subseteq V(G),\, i(G-S)\ge 2\}$ otherwise. We show that $G$ is a fractional $(g,f,n)$-critical graph if $I(G)\ge (b^{2}+bn-\varDelta )/{a}$, where $a, b$ are positive integers, $1\le a\le b$, $b\ge 2$, and $\varDelta =b-a$. Furthermore, a new isolated toughness condition for fractional $(a,b,n)$-critical graphs is given.
DOI : 10.4064/cm6713-8-2016
Keywords: number isolated vertices graph isolated toughness defined infty complete operatorname min g s subseteq g s otherwise fractional critical graph bn vardelta where positive integers vardelta b a furthermore isolated toughness condition fractional critical graphs given

Wei Gao 1 ; Weifan Wang 2

1 School of Information Science and Technology Yunnan Normal University Kunming 650500, China
2 Department of Mathematics Zhejiang Normal University Jinhua 321004, China
@article{10_4064_cm6713_8_2016,
     author = {Wei Gao and Weifan Wang},
     title = {New isolated toughness condition for fractional $(g,f,n)$-critical graphs},
     journal = {Colloquium Mathematicum},
     pages = {55--65},
     publisher = {mathdoc},
     volume = {147},
     number = {1},
     year = {2017},
     doi = {10.4064/cm6713-8-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6713-8-2016/}
}
TY  - JOUR
AU  - Wei Gao
AU  - Weifan Wang
TI  - New isolated toughness condition for fractional $(g,f,n)$-critical graphs
JO  - Colloquium Mathematicum
PY  - 2017
SP  - 55
EP  - 65
VL  - 147
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6713-8-2016/
DO  - 10.4064/cm6713-8-2016
LA  - en
ID  - 10_4064_cm6713_8_2016
ER  - 
%0 Journal Article
%A Wei Gao
%A Weifan Wang
%T New isolated toughness condition for fractional $(g,f,n)$-critical graphs
%J Colloquium Mathematicum
%D 2017
%P 55-65
%V 147
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6713-8-2016/
%R 10.4064/cm6713-8-2016
%G en
%F 10_4064_cm6713_8_2016
Wei Gao; Weifan Wang. New isolated toughness condition for fractional $(g,f,n)$-critical graphs. Colloquium Mathematicum, Tome 147 (2017) no. 1, pp. 55-65. doi : 10.4064/cm6713-8-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm6713-8-2016/

Cité par Sources :