Evolution differential equations in Fréchet sequence spaces
Colloquium Mathematicum, Tome 143 (2016) no. 2, pp. 251-264.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider evolution differential equations in Fréchet spaces with unconditional Schauder basis, and construct a version of the majorant functions method to obtain existence theorems for Cauchy problems. Applications to PDE are also considered.
DOI : 10.4064/cm6710-1-2016
Mots-clés : consider evolution differential equations chet spaces unconditional schauder basis construct version majorant functions method obtain existence theorems cauchy problems applications pde considered

Oleg Zubelevich 1

1 Department of Theoretical Mechanics Mechanics and Mathematics Faculty M. V. Lomonosov Moscow State University Vorob’evy gory 119899, Moscow, Russia
@article{10_4064_cm6710_1_2016,
     author = {Oleg Zubelevich},
     title = {Evolution differential equations in {Fr\'echet} sequence spaces},
     journal = {Colloquium Mathematicum},
     pages = {251--264},
     publisher = {mathdoc},
     volume = {143},
     number = {2},
     year = {2016},
     doi = {10.4064/cm6710-1-2016},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6710-1-2016/}
}
TY  - JOUR
AU  - Oleg Zubelevich
TI  - Evolution differential equations in Fréchet sequence spaces
JO  - Colloquium Mathematicum
PY  - 2016
SP  - 251
EP  - 264
VL  - 143
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6710-1-2016/
DO  - 10.4064/cm6710-1-2016
LA  - fr
ID  - 10_4064_cm6710_1_2016
ER  - 
%0 Journal Article
%A Oleg Zubelevich
%T Evolution differential equations in Fréchet sequence spaces
%J Colloquium Mathematicum
%D 2016
%P 251-264
%V 143
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6710-1-2016/
%R 10.4064/cm6710-1-2016
%G fr
%F 10_4064_cm6710_1_2016
Oleg Zubelevich. Evolution differential equations in Fréchet sequence spaces. Colloquium Mathematicum, Tome 143 (2016) no. 2, pp. 251-264. doi : 10.4064/cm6710-1-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm6710-1-2016/

Cité par Sources :