On minimal zero-sum sequences of length four over cyclic groups
Colloquium Mathematicum, Tome 146 (2017) no. 2, pp. 157-163.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $G$ be a cyclic group of order $n$. It has been conjectured that if $\operatorname{gcd}(n,6)=1$, then every minimal zero-sum sequence $S$ of length $4$ over $G$ has index $1$, that is, $S=(n_1g)\cdot (n_2g)\cdot (n_3g)\cdot (n_4g)$ for some generator $g\in G$ and some integers $n_1,n_2,n_3,n_4\in [1,n]$ with $n_1+n_2+n_3+n_4=n$. This conjecture has been confirmed recently for the case when $\langle {\rm supp}(S)\rangle =G$ and $S$ contains at least one element $g$ with $\langle g\rangle \not =G$. We show that if $\operatorname{gcd}(n,30)=1$ and any element of $S$ is a generator of $G$, then this conjecture is true. Together with other known results, this conjecture is thus settled in the affirmative when $\operatorname{gcd}(n,30)=1$.
DOI : 10.4064/cm6702-1-2016
Keywords: cyclic group order has conjectured operatorname gcd every minimal zero sum sequence length has index nbsp cdot cdot cdot generator integers conjecture has confirmed recently langle supp rangle contains least element langle rangle operatorname gcd element generator conjecture together other known results conjecture settled affirmative operatorname gcd

Xiangneng Zeng 1 ; Xiaoxia Qi 1

1 Sino-French Institute of Nuclear Engineering and Technology Sun Yat-Sen University Guangzhou 510275, P.R. China
@article{10_4064_cm6702_1_2016,
     author = {Xiangneng Zeng and Xiaoxia Qi},
     title = {On minimal zero-sum sequences of length four over cyclic groups},
     journal = {Colloquium Mathematicum},
     pages = {157--163},
     publisher = {mathdoc},
     volume = {146},
     number = {2},
     year = {2017},
     doi = {10.4064/cm6702-1-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6702-1-2016/}
}
TY  - JOUR
AU  - Xiangneng Zeng
AU  - Xiaoxia Qi
TI  - On minimal zero-sum sequences of length four over cyclic groups
JO  - Colloquium Mathematicum
PY  - 2017
SP  - 157
EP  - 163
VL  - 146
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6702-1-2016/
DO  - 10.4064/cm6702-1-2016
LA  - en
ID  - 10_4064_cm6702_1_2016
ER  - 
%0 Journal Article
%A Xiangneng Zeng
%A Xiaoxia Qi
%T On minimal zero-sum sequences of length four over cyclic groups
%J Colloquium Mathematicum
%D 2017
%P 157-163
%V 146
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6702-1-2016/
%R 10.4064/cm6702-1-2016
%G en
%F 10_4064_cm6702_1_2016
Xiangneng Zeng; Xiaoxia Qi. On minimal zero-sum sequences of length four over cyclic groups. Colloquium Mathematicum, Tome 146 (2017) no. 2, pp. 157-163. doi : 10.4064/cm6702-1-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm6702-1-2016/

Cité par Sources :