Weighted inequalities for the dyadic maximal operator involving an infinite product
Colloquium Mathematicum, Tome 145 (2016) no. 2, pp. 231-244
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We define a generalized dyadic maximal operator involving an infinite product. We get adapted $A_p$ and $S_p$ weighted inequalities for this operator. A version of the Carleson embedding theorem is also proved. Our results heavily depend on a generalized Hölder inequality.
Keywords:
define generalized dyadic maximal operator involving infinite product get adapted weighted inequalities operator version carleson embedding theorem proved results heavily depend generalized lder inequality
Affiliations des auteurs :
Wei Chen 1 ; Ruijuan Chen 1 ; Chao Zhang 2
@article{10_4064_cm6701_1_2016,
author = {Wei Chen and Ruijuan Chen and Chao Zhang},
title = {Weighted inequalities for the dyadic maximal operator involving an infinite product},
journal = {Colloquium Mathematicum},
pages = {231--244},
publisher = {mathdoc},
volume = {145},
number = {2},
year = {2016},
doi = {10.4064/cm6701-1-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6701-1-2016/}
}
TY - JOUR AU - Wei Chen AU - Ruijuan Chen AU - Chao Zhang TI - Weighted inequalities for the dyadic maximal operator involving an infinite product JO - Colloquium Mathematicum PY - 2016 SP - 231 EP - 244 VL - 145 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm6701-1-2016/ DO - 10.4064/cm6701-1-2016 LA - en ID - 10_4064_cm6701_1_2016 ER -
%0 Journal Article %A Wei Chen %A Ruijuan Chen %A Chao Zhang %T Weighted inequalities for the dyadic maximal operator involving an infinite product %J Colloquium Mathematicum %D 2016 %P 231-244 %V 145 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm6701-1-2016/ %R 10.4064/cm6701-1-2016 %G en %F 10_4064_cm6701_1_2016
Wei Chen; Ruijuan Chen; Chao Zhang. Weighted inequalities for the dyadic maximal operator involving an infinite product. Colloquium Mathematicum, Tome 145 (2016) no. 2, pp. 231-244. doi: 10.4064/cm6701-1-2016
Cité par Sources :