Classifying homogeneous ultrametric spaces up to coarse equivalence
Colloquium Mathematicum, Tome 144 (2016) no. 2, pp. 189-202
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
For every metric space $X$ we introduce two cardinal characteristics $\mathrm {cov}^\flat (X)$ and $\mathrm {cov}^\sharp (X)$ describing the capacity of balls in $X$. We prove that these cardinal characteristics are invariant under coarse equivalence, and that two ultrametric spaces $X,Y$ are coarsely equivalent if $\mathrm {cov}^\flat (X)=\mathrm {cov}^\sharp (X)=\mathrm {cov}^\flat (Y)=\mathrm {cov}^\sharp (Y)$. This implies that an ultrametric space $X$ is coarsely equivalent to an isometrically homogeneous ultrametric space if and only if $\mathrm {cov}^\flat (X)=\mathrm {cov}^\sharp (X)$. Moreover, two isometrically homogeneous ultrametric spaces $X,Y$ are coarsely equivalent if and only if $\mathrm {cov}^\sharp (X)=\mathrm {cov}^\sharp (Y)$ if and only if each of them coarsely embeds into the other. This means that the coarse structure of an isometrically homogeneous ultrametric space $X$ is completely determined by the value of the cardinal $\mathrm {cov}^\sharp (X)=\mathrm {cov}^\flat (X)$.
Keywords:
every metric space introduce cardinal characteristics mathrm cov flat mathrm cov sharp describing capacity balls prove these cardinal characteristics invariant under coarse equivalence ultrametric spaces coarsely equivalent mathrm cov flat mathrm cov sharp mathrm cov flat mathrm cov sharp implies ultrametric space coarsely equivalent isometrically homogeneous ultrametric space only mathrm cov flat mathrm cov sharp moreover isometrically homogeneous ultrametric spaces coarsely equivalent only mathrm cov sharp mathrm cov sharp only each coarsely embeds other means coarse structure isometrically homogeneous ultrametric space completely determined value cardinal mathrm cov sharp mathrm cov flat
Affiliations des auteurs :
Taras Banakh 1 ; Dušan Repovš 2
@article{10_4064_cm6697_9_2015,
author = {Taras Banakh and Du\v{s}an Repov\v{s}},
title = {Classifying homogeneous ultrametric spaces up to coarse equivalence},
journal = {Colloquium Mathematicum},
pages = {189--202},
year = {2016},
volume = {144},
number = {2},
doi = {10.4064/cm6697-9-2015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6697-9-2015/}
}
TY - JOUR AU - Taras Banakh AU - Dušan Repovš TI - Classifying homogeneous ultrametric spaces up to coarse equivalence JO - Colloquium Mathematicum PY - 2016 SP - 189 EP - 202 VL - 144 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm6697-9-2015/ DO - 10.4064/cm6697-9-2015 LA - en ID - 10_4064_cm6697_9_2015 ER -
Taras Banakh; Dušan Repovš. Classifying homogeneous ultrametric spaces up to coarse equivalence. Colloquium Mathematicum, Tome 144 (2016) no. 2, pp. 189-202. doi: 10.4064/cm6697-9-2015
Cité par Sources :