Ergodicity conditions on the group of 3-adic integers
Colloquium Mathematicum, Tome 147 (2017) no. 1, pp. 67-75
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We provide necessary and sufficient conditions for ergodicity on $\mathbb {Z}_{3}$ and deduce an alternative proof for the ergodicity of 3-adic affine dynamical systems. Moreover, we prove that the ergodicity characterization by means of the van der Put series known for the group of 2-adic integers has no equivalent on $\mathbb {Z}_{3}$.
Keywords:
provide necessary sufficient conditions ergodicity mathbb deduce alternative proof ergodicity adic affine dynamical systems moreover prove ergodicity characterization means van der put series known group adic integers has equivalent mathbb
Affiliations des auteurs :
Nacima Memić 1
@article{10_4064_cm6696_2_2016,
author = {Nacima Memi\'c},
title = {Ergodicity conditions on the group of 3-adic integers},
journal = {Colloquium Mathematicum},
pages = {67--75},
year = {2017},
volume = {147},
number = {1},
doi = {10.4064/cm6696-2-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6696-2-2016/}
}
Nacima Memić. Ergodicity conditions on the group of 3-adic integers. Colloquium Mathematicum, Tome 147 (2017) no. 1, pp. 67-75. doi: 10.4064/cm6696-2-2016
Cité par Sources :