Component clusters for acyclic quivers
Colloquium Mathematicum, Tome 144 (2016) no. 2, pp. 245-264
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The theory of Caldero–Chapoton algebras of Cerulli Irelli, Labardini-Fragoso and Schröer (2015) leads to a refinement of the notions of cluster variables and clusters, via so-called component clusters. We compare component clusters to classical clusters for the cluster algebra of an acyclic quiver. We propose a definition of mutation between component clusters and determine the mutation relations of component clusters for affine quivers. In the case of a wild quiver, we provide bounds for the size of component clusters.
Keywords:
theory caldero chapoton algebras cerulli irelli labardini fragoso schr leads refinement notions cluster variables clusters via so called component clusters compare component clusters classical clusters cluster algebra acyclic quiver propose definition mutation between component clusters determine mutation relations component clusters affine quivers wild quiver provide bounds size component clusters
Affiliations des auteurs :
Sarah Scherotzke 1
@article{10_4064_cm6691_9_2015,
author = {Sarah Scherotzke},
title = {Component clusters for acyclic quivers},
journal = {Colloquium Mathematicum},
pages = {245--264},
year = {2016},
volume = {144},
number = {2},
doi = {10.4064/cm6691-9-2015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6691-9-2015/}
}
Sarah Scherotzke. Component clusters for acyclic quivers. Colloquium Mathematicum, Tome 144 (2016) no. 2, pp. 245-264. doi: 10.4064/cm6691-9-2015
Cité par Sources :