Component clusters for acyclic quivers
Colloquium Mathematicum, Tome 144 (2016) no. 2, pp. 245-264.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The theory of Caldero–Chapoton algebras of Cerulli Irelli, Labardini-Fragoso and Schröer (2015) leads to a refinement of the notions of cluster variables and clusters, via so-called component clusters. We compare component clusters to classical clusters for the cluster algebra of an acyclic quiver. We propose a definition of mutation between component clusters and determine the mutation relations of component clusters for affine quivers. In the case of a wild quiver, we provide bounds for the size of component clusters.
DOI : 10.4064/cm6691-9-2015
Keywords: theory caldero chapoton algebras cerulli irelli labardini fragoso schr leads refinement notions cluster variables clusters via so called component clusters compare component clusters classical clusters cluster algebra acyclic quiver propose definition mutation between component clusters determine mutation relations component clusters affine quivers wild quiver provide bounds size component clusters

Sarah Scherotzke 1

1 Institute of Mathematics University of Bonn D-53115 Bonn, Germany
@article{10_4064_cm6691_9_2015,
     author = {Sarah Scherotzke},
     title = {Component clusters for acyclic quivers},
     journal = {Colloquium Mathematicum},
     pages = {245--264},
     publisher = {mathdoc},
     volume = {144},
     number = {2},
     year = {2016},
     doi = {10.4064/cm6691-9-2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6691-9-2015/}
}
TY  - JOUR
AU  - Sarah Scherotzke
TI  - Component clusters for acyclic quivers
JO  - Colloquium Mathematicum
PY  - 2016
SP  - 245
EP  - 264
VL  - 144
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6691-9-2015/
DO  - 10.4064/cm6691-9-2015
LA  - en
ID  - 10_4064_cm6691_9_2015
ER  - 
%0 Journal Article
%A Sarah Scherotzke
%T Component clusters for acyclic quivers
%J Colloquium Mathematicum
%D 2016
%P 245-264
%V 144
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6691-9-2015/
%R 10.4064/cm6691-9-2015
%G en
%F 10_4064_cm6691_9_2015
Sarah Scherotzke. Component clusters for acyclic quivers. Colloquium Mathematicum, Tome 144 (2016) no. 2, pp. 245-264. doi : 10.4064/cm6691-9-2015. http://geodesic.mathdoc.fr/articles/10.4064/cm6691-9-2015/

Cité par Sources :