Dimensions of sums with self-similar sets
Colloquium Mathematicum, Tome 147 (2017) no. 1, pp. 43-54.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For some self-similar sets $K\subset {\mathbb {R}}^d$ we obtain certain lower bounds for the lower Minkowski dimension of $K+E$ in terms of the lower Minkowski dimension of $E$.
DOI : 10.4064/cm6683-6-2016
Keywords: self similar sets subset mathbb obtain certain lower bounds lower minkowski dimension terms lower minkowski dimension

Daniel Oberlin 1 ; Richard Oberlin 1

1 Department of Mathematics Florida State University Tallahassee, FL 32306, U.S.A.
@article{10_4064_cm6683_6_2016,
     author = {Daniel Oberlin and Richard Oberlin},
     title = {Dimensions of sums with self-similar sets},
     journal = {Colloquium Mathematicum},
     pages = {43--54},
     publisher = {mathdoc},
     volume = {147},
     number = {1},
     year = {2017},
     doi = {10.4064/cm6683-6-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6683-6-2016/}
}
TY  - JOUR
AU  - Daniel Oberlin
AU  - Richard Oberlin
TI  - Dimensions of sums with self-similar sets
JO  - Colloquium Mathematicum
PY  - 2017
SP  - 43
EP  - 54
VL  - 147
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6683-6-2016/
DO  - 10.4064/cm6683-6-2016
LA  - en
ID  - 10_4064_cm6683_6_2016
ER  - 
%0 Journal Article
%A Daniel Oberlin
%A Richard Oberlin
%T Dimensions of sums with self-similar sets
%J Colloquium Mathematicum
%D 2017
%P 43-54
%V 147
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6683-6-2016/
%R 10.4064/cm6683-6-2016
%G en
%F 10_4064_cm6683_6_2016
Daniel Oberlin; Richard Oberlin. Dimensions of sums with self-similar sets. Colloquium Mathematicum, Tome 147 (2017) no. 1, pp. 43-54. doi : 10.4064/cm6683-6-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm6683-6-2016/

Cité par Sources :