The affineness criterion for quantum Hom-Yetter–Drinfel’d modules
Colloquium Mathematicum, Tome 143 (2016) no. 2, pp. 169-185.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Quantum integrals associated to quantum Hom-Yetter–Drinfel’d modules are defined, and the affineness criterion for quantum Hom-Yetter–Drinfel’d modules is proved in the following form. Let $(H, \alpha)$ be a monoidal Hom-Hopf algebra, $(A, \beta)$ an $(H, \alpha)$-Hom-bicomodule algebra and $B=A^{\mathop{\rm co}H}$. Under the assumption that there exists a total quantum integral $\gamma: H\rightarrow {\rm Hom}(H,A)$ and the canonical map $\beta: A\otimes_{B}A\rightarrow A\otimes H$, $a\otimes_{B}b\mapsto S^{-1}(b_{[1]})\alpha(b_{[0][-1]}) \otimes \beta^{-1}(a)\beta(b_{[0][0]})$, is surjective, we prove that the induction functor $A\otimes_B-:\widetilde{{\mathscr H}} ({\mathscr M}_k)_{B}\rightarrow {}^H{\mathscr H}{\mathscr Y}{\mathscr D}_A$ is an equivalence of categories.
DOI : 10.4064/cm6609-12-2015
Keywords: quantum integrals associated quantum hom yetter drinfel modules defined affineness criterion quantum hom yetter drinfel modules proved following form alpha monoidal hom hopf algebra beta alpha hom bicomodule algebra mathop under assumption there exists total quantum integral gamma rightarrow hom canonical map beta otimes rightarrow otimes otimes mapsto alpha otimes beta beta surjective prove induction functor otimes b widetilde mathscr mathscr rightarrow mathscr mathscr mathscr equivalence categories

Shuangjian Guo 1 ; Shengxiang Wang 2

1 School of Mathematics and Statistics Guizhou University of Finance and Economics Guiyang, 550025, P.R. China
2 School of Mathematics and Finance Chuzhou University Chuzhou 239000, P.R. China
@article{10_4064_cm6609_12_2015,
     author = {Shuangjian Guo and Shengxiang Wang},
     title = {The affineness criterion for quantum {Hom-Yetter{\textendash}Drinfel{\textquoteright}d} modules},
     journal = {Colloquium Mathematicum},
     pages = {169--185},
     publisher = {mathdoc},
     volume = {143},
     number = {2},
     year = {2016},
     doi = {10.4064/cm6609-12-2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6609-12-2015/}
}
TY  - JOUR
AU  - Shuangjian Guo
AU  - Shengxiang Wang
TI  - The affineness criterion for quantum Hom-Yetter–Drinfel’d modules
JO  - Colloquium Mathematicum
PY  - 2016
SP  - 169
EP  - 185
VL  - 143
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6609-12-2015/
DO  - 10.4064/cm6609-12-2015
LA  - en
ID  - 10_4064_cm6609_12_2015
ER  - 
%0 Journal Article
%A Shuangjian Guo
%A Shengxiang Wang
%T The affineness criterion for quantum Hom-Yetter–Drinfel’d modules
%J Colloquium Mathematicum
%D 2016
%P 169-185
%V 143
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6609-12-2015/
%R 10.4064/cm6609-12-2015
%G en
%F 10_4064_cm6609_12_2015
Shuangjian Guo; Shengxiang Wang. The affineness criterion for quantum Hom-Yetter–Drinfel’d modules. Colloquium Mathematicum, Tome 143 (2016) no. 2, pp. 169-185. doi : 10.4064/cm6609-12-2015. http://geodesic.mathdoc.fr/articles/10.4064/cm6609-12-2015/

Cité par Sources :