The affineness criterion for quantum Hom-Yetter–Drinfel’d modules
Colloquium Mathematicum, Tome 143 (2016) no. 2, pp. 169-185
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Quantum integrals associated to quantum Hom-Yetter–Drinfel’d modules are defined, and the affineness criterion for quantum Hom-Yetter–Drinfel’d modules is proved in the following form. Let $(H, \alpha)$ be a monoidal Hom-Hopf algebra, $(A, \beta)$ an $(H, \alpha)$-Hom-bicomodule algebra and $B=A^{\mathop{\rm co}H}$.
Under the assumption that there exists a total quantum integral $\gamma: H\rightarrow {\rm Hom}(H,A)$ and the canonical map
$\beta: A\otimes_{B}A\rightarrow A\otimes H$,
$a\otimes_{B}b\mapsto S^{-1}(b_{[1]})\alpha(b_{[0][-1]}) \otimes \beta^{-1}(a)\beta(b_{[0][0]})$,
is surjective, we prove that the induction functor $A\otimes_B-:\widetilde{{\mathscr H}}
({\mathscr M}_k)_{B}\rightarrow {}^H{\mathscr H}{\mathscr Y}{\mathscr D}_A$
is an equivalence of categories.
Keywords:
quantum integrals associated quantum hom yetter drinfel modules defined affineness criterion quantum hom yetter drinfel modules proved following form alpha monoidal hom hopf algebra beta alpha hom bicomodule algebra mathop under assumption there exists total quantum integral gamma rightarrow hom canonical map beta otimes rightarrow otimes otimes mapsto alpha otimes beta beta surjective prove induction functor otimes b widetilde mathscr mathscr rightarrow mathscr mathscr mathscr equivalence categories
Affiliations des auteurs :
Shuangjian Guo 1 ; Shengxiang Wang 2
@article{10_4064_cm6609_12_2015,
author = {Shuangjian Guo and Shengxiang Wang},
title = {The affineness criterion for quantum {Hom-Yetter{\textendash}Drinfel{\textquoteright}d} modules},
journal = {Colloquium Mathematicum},
pages = {169--185},
publisher = {mathdoc},
volume = {143},
number = {2},
year = {2016},
doi = {10.4064/cm6609-12-2015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6609-12-2015/}
}
TY - JOUR AU - Shuangjian Guo AU - Shengxiang Wang TI - The affineness criterion for quantum Hom-Yetter–Drinfel’d modules JO - Colloquium Mathematicum PY - 2016 SP - 169 EP - 185 VL - 143 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm6609-12-2015/ DO - 10.4064/cm6609-12-2015 LA - en ID - 10_4064_cm6609_12_2015 ER -
%0 Journal Article %A Shuangjian Guo %A Shengxiang Wang %T The affineness criterion for quantum Hom-Yetter–Drinfel’d modules %J Colloquium Mathematicum %D 2016 %P 169-185 %V 143 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm6609-12-2015/ %R 10.4064/cm6609-12-2015 %G en %F 10_4064_cm6609_12_2015
Shuangjian Guo; Shengxiang Wang. The affineness criterion for quantum Hom-Yetter–Drinfel’d modules. Colloquium Mathematicum, Tome 143 (2016) no. 2, pp. 169-185. doi: 10.4064/cm6609-12-2015
Cité par Sources :