Irreducible polynomials with all but one zero close to the unit disk
Colloquium Mathematicum, Tome 143 (2016) no. 2, pp. 265-270.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider a certain class of polynomials whose zeros are, all with one exception, close to the closed unit disk. We demonstrate that the Mahler measure can be employed to prove irreducibility of these polynomials over $\mathbb {Q}$.
DOI : 10.4064/cm6604-11-2015
Keywords: consider certain class polynomials whose zeros exception close closed unit disk demonstrate mahler measure employed prove irreducibility these polynomials mathbb

DoYong Kwon 1

1 Department of Mathematics Chonnam National University Gwangju 500-757, Republic of Korea
@article{10_4064_cm6604_11_2015,
     author = {DoYong Kwon},
     title = {Irreducible polynomials with all but one zero close to the unit disk},
     journal = {Colloquium Mathematicum},
     pages = {265--270},
     publisher = {mathdoc},
     volume = {143},
     number = {2},
     year = {2016},
     doi = {10.4064/cm6604-11-2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6604-11-2015/}
}
TY  - JOUR
AU  - DoYong Kwon
TI  - Irreducible polynomials with all but one zero close to the unit disk
JO  - Colloquium Mathematicum
PY  - 2016
SP  - 265
EP  - 270
VL  - 143
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6604-11-2015/
DO  - 10.4064/cm6604-11-2015
LA  - en
ID  - 10_4064_cm6604_11_2015
ER  - 
%0 Journal Article
%A DoYong Kwon
%T Irreducible polynomials with all but one zero close to the unit disk
%J Colloquium Mathematicum
%D 2016
%P 265-270
%V 143
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6604-11-2015/
%R 10.4064/cm6604-11-2015
%G en
%F 10_4064_cm6604_11_2015
DoYong Kwon. Irreducible polynomials with all but one zero close to the unit disk. Colloquium Mathematicum, Tome 143 (2016) no. 2, pp. 265-270. doi : 10.4064/cm6604-11-2015. http://geodesic.mathdoc.fr/articles/10.4064/cm6604-11-2015/

Cité par Sources :