Irreducible polynomials with all but one zero close to the unit disk
Colloquium Mathematicum, Tome 143 (2016) no. 2, pp. 265-270
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider a certain class of polynomials whose zeros are, all with one exception, close to the closed unit disk. We demonstrate that the Mahler measure can be employed to prove irreducibility of these polynomials over $\mathbb {Q}$.
Keywords:
consider certain class polynomials whose zeros exception close closed unit disk demonstrate mahler measure employed prove irreducibility these polynomials mathbb
Affiliations des auteurs :
DoYong Kwon 1
@article{10_4064_cm6604_11_2015,
author = {DoYong Kwon},
title = {Irreducible polynomials with all but one zero close to the unit disk},
journal = {Colloquium Mathematicum},
pages = {265--270},
publisher = {mathdoc},
volume = {143},
number = {2},
year = {2016},
doi = {10.4064/cm6604-11-2015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6604-11-2015/}
}
TY - JOUR AU - DoYong Kwon TI - Irreducible polynomials with all but one zero close to the unit disk JO - Colloquium Mathematicum PY - 2016 SP - 265 EP - 270 VL - 143 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm6604-11-2015/ DO - 10.4064/cm6604-11-2015 LA - en ID - 10_4064_cm6604_11_2015 ER -
DoYong Kwon. Irreducible polynomials with all but one zero close to the unit disk. Colloquium Mathematicum, Tome 143 (2016) no. 2, pp. 265-270. doi: 10.4064/cm6604-11-2015
Cité par Sources :