General Reilly-type inequalities for submanifolds of weighted Euclidean spaces
Colloquium Mathematicum, Tome 144 (2016) no. 1, pp. 127-136.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove new upper bounds for the first positive eigenvalue of a family of second order operators, including the Bakry–Émery Laplacian, for submanifolds of weighted Euclidean spaces.
DOI : 10.4064/cm6596-12-2015
Keywords: prove upper bounds first positive eigenvalue family second order operators including bakry mery laplacian submanifolds weighted euclidean spaces

Julien Roth 1

1 LAMA, UPEM-UPEC-CNRS Cité Descartes, Champs-sur-Marne 77454 Marne-la-Vallée Cedex 2, France
@article{10_4064_cm6596_12_2015,
     author = {Julien Roth},
     title = {General {Reilly-type} inequalities for submanifolds of weighted {Euclidean} spaces},
     journal = {Colloquium Mathematicum},
     pages = {127--136},
     publisher = {mathdoc},
     volume = {144},
     number = {1},
     year = {2016},
     doi = {10.4064/cm6596-12-2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6596-12-2015/}
}
TY  - JOUR
AU  - Julien Roth
TI  - General Reilly-type inequalities for submanifolds of weighted Euclidean spaces
JO  - Colloquium Mathematicum
PY  - 2016
SP  - 127
EP  - 136
VL  - 144
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6596-12-2015/
DO  - 10.4064/cm6596-12-2015
LA  - en
ID  - 10_4064_cm6596_12_2015
ER  - 
%0 Journal Article
%A Julien Roth
%T General Reilly-type inequalities for submanifolds of weighted Euclidean spaces
%J Colloquium Mathematicum
%D 2016
%P 127-136
%V 144
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6596-12-2015/
%R 10.4064/cm6596-12-2015
%G en
%F 10_4064_cm6596_12_2015
Julien Roth. General Reilly-type inequalities for submanifolds of weighted Euclidean spaces. Colloquium Mathematicum, Tome 144 (2016) no. 1, pp. 127-136. doi : 10.4064/cm6596-12-2015. http://geodesic.mathdoc.fr/articles/10.4064/cm6596-12-2015/

Cité par Sources :