On near-perfect numbers
Colloquium Mathematicum, Tome 144 (2016) no. 2, pp. 157-188.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For a positive integer $n$, let $\sigma (n)$ denote the sum of the positive divisors of $n$. We call $n$ a near-perfect number if $\sigma (n) = 2n + d$ where $d$ is a proper divisor of $n$. We show that the only odd near-perfect number with four distinct prime divisors is $3^4\cdot 7^2\cdot 11^2\cdot 19^2$.
DOI : 10.4064/cm6588-10-2015
Keywords: positive integer sigma denote sum positive divisors call near perfect number sigma where proper divisor nobreakspace only odd near perfect number distinct prime divisors cdot cdot cdot

Min Tang 1 ; Xiaoyan Ma 1 ; Min Feng 1

1 School of Mathematics and Computer Science Anhui Normal University Wuhu 241003, PR China
@article{10_4064_cm6588_10_2015,
     author = {Min Tang and Xiaoyan Ma and Min Feng},
     title = {On near-perfect numbers},
     journal = {Colloquium Mathematicum},
     pages = {157--188},
     publisher = {mathdoc},
     volume = {144},
     number = {2},
     year = {2016},
     doi = {10.4064/cm6588-10-2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6588-10-2015/}
}
TY  - JOUR
AU  - Min Tang
AU  - Xiaoyan Ma
AU  - Min Feng
TI  - On near-perfect numbers
JO  - Colloquium Mathematicum
PY  - 2016
SP  - 157
EP  - 188
VL  - 144
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6588-10-2015/
DO  - 10.4064/cm6588-10-2015
LA  - en
ID  - 10_4064_cm6588_10_2015
ER  - 
%0 Journal Article
%A Min Tang
%A Xiaoyan Ma
%A Min Feng
%T On near-perfect numbers
%J Colloquium Mathematicum
%D 2016
%P 157-188
%V 144
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6588-10-2015/
%R 10.4064/cm6588-10-2015
%G en
%F 10_4064_cm6588_10_2015
Min Tang; Xiaoyan Ma; Min Feng. On near-perfect numbers. Colloquium Mathematicum, Tome 144 (2016) no. 2, pp. 157-188. doi : 10.4064/cm6588-10-2015. http://geodesic.mathdoc.fr/articles/10.4064/cm6588-10-2015/

Cité par Sources :