On a generalisation of the Banach Indicatrix Theorem
Colloquium Mathematicum, Tome 148 (2017) no. 2, pp. 301-313.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that for any regulated function $f:[a,b]\rightarrow \mathbb {R}$ and $c\geq 0,$ the infimum of the total variations of functions approximating $f$ with accuracy $c/2$ is equal to $\int _{\mathbb {R}} n_{c}^{y} \,dy,$ where $n_{c}^{y}$ is the number of times $f$ crosses the interval $[y,y+c].$
DOI : 10.4064/cm6583-3-2017
Keywords: prove regulated function rightarrow mathbb geq infimum total variations functions approximating accuracy equal int mathbb where number times crosses interval

Rafał M. Łochowski 1

1 Department of Mathematics and Mathematical Economics Warsaw School of Economics Madalińskiego 6/8 02-513 Warszawa, Poland and African Institute for Mathematical Sciences 6-8 Melrose Road Muizenberg 7945, South Africa
@article{10_4064_cm6583_3_2017,
     author = {Rafa{\l} M. {\L}ochowski},
     title = {On a generalisation of the {Banach} {Indicatrix} {Theorem}},
     journal = {Colloquium Mathematicum},
     pages = {301--313},
     publisher = {mathdoc},
     volume = {148},
     number = {2},
     year = {2017},
     doi = {10.4064/cm6583-3-2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6583-3-2017/}
}
TY  - JOUR
AU  - Rafał M. Łochowski
TI  - On a generalisation of the Banach Indicatrix Theorem
JO  - Colloquium Mathematicum
PY  - 2017
SP  - 301
EP  - 313
VL  - 148
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6583-3-2017/
DO  - 10.4064/cm6583-3-2017
LA  - en
ID  - 10_4064_cm6583_3_2017
ER  - 
%0 Journal Article
%A Rafał M. Łochowski
%T On a generalisation of the Banach Indicatrix Theorem
%J Colloquium Mathematicum
%D 2017
%P 301-313
%V 148
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6583-3-2017/
%R 10.4064/cm6583-3-2017
%G en
%F 10_4064_cm6583_3_2017
Rafał M. Łochowski. On a generalisation of the Banach Indicatrix Theorem. Colloquium Mathematicum, Tome 148 (2017) no. 2, pp. 301-313. doi : 10.4064/cm6583-3-2017. http://geodesic.mathdoc.fr/articles/10.4064/cm6583-3-2017/

Cité par Sources :