On a generalisation of the Banach Indicatrix Theorem
Colloquium Mathematicum, Tome 148 (2017) no. 2, pp. 301-313
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove that for any regulated function $f:[a,b]\rightarrow \mathbb {R}$ and $c\geq 0,$ the infimum of the total variations of functions approximating $f$ with accuracy $c/2$ is equal to $\int _{\mathbb {R}} n_{c}^{y} \,dy,$ where $n_{c}^{y}$ is the number of times $f$ crosses the interval $[y,y+c].$
Keywords:
prove regulated function rightarrow mathbb geq infimum total variations functions approximating accuracy equal int mathbb where number times crosses interval
Affiliations des auteurs :
Rafał M. Łochowski  1
@article{10_4064_cm6583_3_2017,
author = {Rafa{\l} M. {\L}ochowski},
title = {On a generalisation of the {Banach} {Indicatrix} {Theorem}},
journal = {Colloquium Mathematicum},
pages = {301--313},
year = {2017},
volume = {148},
number = {2},
doi = {10.4064/cm6583-3-2017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6583-3-2017/}
}
Rafał M. Łochowski. On a generalisation of the Banach Indicatrix Theorem. Colloquium Mathematicum, Tome 148 (2017) no. 2, pp. 301-313. doi: 10.4064/cm6583-3-2017
Cité par Sources :