A Hilbert-type integral inequality with a hybrid kernel and its applications
Colloquium Mathematicum, Tome 143 (2016) no. 2, pp. 193-207
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove a multi-parameter Hilbert-type integral inequality with a hybrid kernel. We describe the best constant in the inequality in terms of hypergeometric functions. Some equivalent forms of the inequalities are also studied. By specifying parameter values we obtain results proved by other authors as well as many new inequalities.
Keywords:
prove multi parameter hilbert type integral inequality hybrid kernel describe best constant inequality terms hypergeometric functions equivalent forms inequalities studied specifying parameter values obtain results proved other authors many inequalities
Affiliations des auteurs :
Qiong Liu 1 ; Dazhao Chen 1
@article{10_4064_cm6572_1_2016,
author = {Qiong Liu and Dazhao Chen},
title = {A {Hilbert-type} integral inequality with a hybrid kernel and its applications},
journal = {Colloquium Mathematicum},
pages = {193--207},
publisher = {mathdoc},
volume = {143},
number = {2},
year = {2016},
doi = {10.4064/cm6572-1-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6572-1-2016/}
}
TY - JOUR AU - Qiong Liu AU - Dazhao Chen TI - A Hilbert-type integral inequality with a hybrid kernel and its applications JO - Colloquium Mathematicum PY - 2016 SP - 193 EP - 207 VL - 143 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm6572-1-2016/ DO - 10.4064/cm6572-1-2016 LA - en ID - 10_4064_cm6572_1_2016 ER -
%0 Journal Article %A Qiong Liu %A Dazhao Chen %T A Hilbert-type integral inequality with a hybrid kernel and its applications %J Colloquium Mathematicum %D 2016 %P 193-207 %V 143 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm6572-1-2016/ %R 10.4064/cm6572-1-2016 %G en %F 10_4064_cm6572_1_2016
Qiong Liu; Dazhao Chen. A Hilbert-type integral inequality with a hybrid kernel and its applications. Colloquium Mathematicum, Tome 143 (2016) no. 2, pp. 193-207. doi: 10.4064/cm6572-1-2016
Cité par Sources :