Symmetric and antipersymmetric extremal rank solutions for linear matrix equations and their approximation
Colloquium Mathematicum, Tome 148 (2017) no. 1, pp. 13-26.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

This study establishes solvability conditions and explicit expressions of symmetric and antipersymmetric solutions of a matrix equation $AX=B$. The maximal and minimal ranks of the solutions are then derived. Finally, the matrix closest to a given matrix in the Frobenius norm is given explicitly in the minimal rank solution set of the matrix equation $AX=B$.
DOI : 10.4064/cm6557-5-2016
Keywords: study establishes solvability conditions explicit expressions symmetric antipersymmetric solutions matrix equation maximal minimal ranks solutions derived finally matrix closest given matrix frobenius norm given explicitly minimal rank solution set matrix equation

Qingfeng Xiao 1 ; Tianxiang Feng 1 ; Zhongzhi Zhang 2

1 Department of Basic Science Dongguan Polytechnic 523808 Dongguan, China
2 Department of Mathematics Dongguan University of Technology 523808 Dongguan, China
@article{10_4064_cm6557_5_2016,
     author = {Qingfeng Xiao and Tianxiang Feng and Zhongzhi Zhang},
     title = {Symmetric and antipersymmetric extremal rank solutions for linear matrix equations and their approximation},
     journal = {Colloquium Mathematicum},
     pages = {13--26},
     publisher = {mathdoc},
     volume = {148},
     number = {1},
     year = {2017},
     doi = {10.4064/cm6557-5-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6557-5-2016/}
}
TY  - JOUR
AU  - Qingfeng Xiao
AU  - Tianxiang Feng
AU  - Zhongzhi Zhang
TI  - Symmetric and antipersymmetric extremal rank solutions for linear matrix equations and their approximation
JO  - Colloquium Mathematicum
PY  - 2017
SP  - 13
EP  - 26
VL  - 148
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6557-5-2016/
DO  - 10.4064/cm6557-5-2016
LA  - en
ID  - 10_4064_cm6557_5_2016
ER  - 
%0 Journal Article
%A Qingfeng Xiao
%A Tianxiang Feng
%A Zhongzhi Zhang
%T Symmetric and antipersymmetric extremal rank solutions for linear matrix equations and their approximation
%J Colloquium Mathematicum
%D 2017
%P 13-26
%V 148
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6557-5-2016/
%R 10.4064/cm6557-5-2016
%G en
%F 10_4064_cm6557_5_2016
Qingfeng Xiao; Tianxiang Feng; Zhongzhi Zhang. Symmetric and antipersymmetric extremal rank solutions for linear matrix equations and their approximation. Colloquium Mathematicum, Tome 148 (2017) no. 1, pp. 13-26. doi : 10.4064/cm6557-5-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm6557-5-2016/

Cité par Sources :