Consistency of a strong uniformization principle
Colloquium Mathematicum, Tome 146 (2017) no. 1, pp. 1-13.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove the consistency of a strong uniformization principle for subsets of the Baire space of cardinality $\aleph _{1}$.
DOI : 10.4064/cm6542-3-2016
Keywords: prove consistency strong uniformization principle subsets baire space cardinality nbsp aleph

Paul Larson 1 ; Saharon Shelah 2

1 Department of Mathematics Miami University Oxford, OH 45056, U.S.A.
2 Einstein Institute of Mathematics Edmond J. Safra Campus, Givat Ram The Hebrew University of Jerusalem Jerusalem, 91904, Israel and Department of Mathematics Hill Center – Busch Campus Rutgers, The State University of New Jersey 110 Frelinghuysen Road Piscataway, NJ 08854-8019, U.S.A.
@article{10_4064_cm6542_3_2016,
     author = {Paul Larson and Saharon Shelah},
     title = {Consistency of a strong uniformization principle},
     journal = {Colloquium Mathematicum},
     pages = {1--13},
     publisher = {mathdoc},
     volume = {146},
     number = {1},
     year = {2017},
     doi = {10.4064/cm6542-3-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6542-3-2016/}
}
TY  - JOUR
AU  - Paul Larson
AU  - Saharon Shelah
TI  - Consistency of a strong uniformization principle
JO  - Colloquium Mathematicum
PY  - 2017
SP  - 1
EP  - 13
VL  - 146
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6542-3-2016/
DO  - 10.4064/cm6542-3-2016
LA  - en
ID  - 10_4064_cm6542_3_2016
ER  - 
%0 Journal Article
%A Paul Larson
%A Saharon Shelah
%T Consistency of a strong uniformization principle
%J Colloquium Mathematicum
%D 2017
%P 1-13
%V 146
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6542-3-2016/
%R 10.4064/cm6542-3-2016
%G en
%F 10_4064_cm6542_3_2016
Paul Larson; Saharon Shelah. Consistency of a strong uniformization principle. Colloquium Mathematicum, Tome 146 (2017) no. 1, pp. 1-13. doi : 10.4064/cm6542-3-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm6542-3-2016/

Cité par Sources :