A note on representation functions with different weights
Colloquium Mathematicum, Tome 143 (2016) no. 1, pp. 105-112
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
For any positive integer $k$ and any set $A$ of nonnegative integers, let $r_{1,k}(A,n)$ denote the number of solutions $(a_1,a_2)$ of
the equation $n=a_1+ka_2$ with $a_1,a_2\in A$. Let $k,l\geq 2$ be two distinct integers. We prove that
there exists a set $A\subseteq\mathbb N$ such that both $r_{1,k}(A,n)=r_{1,k}(\mathbb N\setminus A,n)$ and $r_{1,l}(A,n)=r_{1,l}(\mathbb N\setminus A,n)$
hold for all $n\geq n_0$ if and only if $\log k/\!\log l=a/b$
for some odd positive integers $a,b$, disproving a conjecture of Yang.
We also show that for any set $A\subseteq\mathbb N$
satisfying $r_{1,k}(A,n)=r_{1,k}(\mathbb N\setminus A,n)$ for all
$n\geq n_0$, we have $r_{1,k}(A,n)\rightarrow\infty$ as $n\to\infty$.
Keywords:
positive integer set nonnegative integers denote number solutions equation geq distinct integers prove there exists set subseteq mathbb mathbb setminus mathbb setminus geq only log log odd positive integers disproving conjecture yang set subseteq mathbb satisfying mathbb setminus geq have rightarrow infty infty
Affiliations des auteurs :
Zhenhua Qu  1
@article{10_4064_cm6512_12_2015,
author = {Zhenhua Qu},
title = {A note on representation functions with different weights},
journal = {Colloquium Mathematicum},
pages = {105--112},
year = {2016},
volume = {143},
number = {1},
doi = {10.4064/cm6512-12-2015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6512-12-2015/}
}
Zhenhua Qu. A note on representation functions with different weights. Colloquium Mathematicum, Tome 143 (2016) no. 1, pp. 105-112. doi: 10.4064/cm6512-12-2015
Cité par Sources :