Modules which are invariant under idempotents of their envelopes
Colloquium Mathematicum, Tome 143 (2016) no. 2, pp. 237-250
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We study the class of modules which are invariant
under idempotents of their envelopes. We say that a module $M$ is
$\mathcal{X}$-idempotent-invariant if there exists an
$\mathcal{X}$-envelope $u : M \rightarrow X$ such that for any
idempotent $g\in \operatorname{End}(X)$ there exists an endomorphism $f :
M \rightarrow M$ such that $uf = gu$. The properties of this class of
modules are discussed. We prove that $M$ is
$\mathcal{X}$-idempotent-invariant if and only if for every
decomposition $X=\bigoplus_{i\in I}X_i$, we have $M=\bigoplus_{i\in I} (u^{-1}(X_i)\cap M)$.
Moreover, some generalizations of $\mathcal{X}$-idempotent-invariant
modules are considered.
Keywords:
study class modules which invariant under idempotents their envelopes say module mathcal idempotent invariant there exists mathcal envelope rightarrow idempotent operatorname end there exists endomorphism rightarrow properties class modules discussed prove mathcal idempotent invariant only every decomposition bigoplus have bigoplus cap moreover generalizations mathcal idempotent invariant modules considered
Affiliations des auteurs :
Le Van Thuyet 1 ; Phan Dan 2 ; Truong Cong Quynh 3
@article{10_4064_cm6496_1_2016,
author = {Le Van Thuyet and Phan Dan and Truong Cong Quynh},
title = {Modules which are invariant under idempotents of their envelopes},
journal = {Colloquium Mathematicum},
pages = {237--250},
year = {2016},
volume = {143},
number = {2},
doi = {10.4064/cm6496-1-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6496-1-2016/}
}
TY - JOUR AU - Le Van Thuyet AU - Phan Dan AU - Truong Cong Quynh TI - Modules which are invariant under idempotents of their envelopes JO - Colloquium Mathematicum PY - 2016 SP - 237 EP - 250 VL - 143 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm6496-1-2016/ DO - 10.4064/cm6496-1-2016 LA - en ID - 10_4064_cm6496_1_2016 ER -
%0 Journal Article %A Le Van Thuyet %A Phan Dan %A Truong Cong Quynh %T Modules which are invariant under idempotents of their envelopes %J Colloquium Mathematicum %D 2016 %P 237-250 %V 143 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/cm6496-1-2016/ %R 10.4064/cm6496-1-2016 %G en %F 10_4064_cm6496_1_2016
Le Van Thuyet; Phan Dan; Truong Cong Quynh. Modules which are invariant under idempotents of their envelopes. Colloquium Mathematicum, Tome 143 (2016) no. 2, pp. 237-250. doi: 10.4064/cm6496-1-2016
Cité par Sources :