Modules which are invariant under idempotents of their envelopes
Colloquium Mathematicum, Tome 143 (2016) no. 2, pp. 237-250.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the class of modules which are invariant under idempotents of their envelopes. We say that a module $M$ is $\mathcal{X}$-idempotent-invariant if there exists an $\mathcal{X}$-envelope $u : M \rightarrow X$ such that for any idempotent $g\in \operatorname{End}(X)$ there exists an endomorphism $f : M \rightarrow M$ such that $uf = gu$. The properties of this class of modules are discussed. We prove that $M$ is $\mathcal{X}$-idempotent-invariant if and only if for every decomposition $X=\bigoplus_{i\in I}X_i$, we have $M=\bigoplus_{i\in I} (u^{-1}(X_i)\cap M)$. Moreover, some generalizations of $\mathcal{X}$-idempotent-invariant modules are considered.
DOI : 10.4064/cm6496-1-2016
Keywords: study class modules which invariant under idempotents their envelopes say module mathcal idempotent invariant there exists mathcal envelope rightarrow idempotent operatorname end there exists endomorphism rightarrow properties class modules discussed prove mathcal idempotent invariant only every decomposition bigoplus have bigoplus cap moreover generalizations mathcal idempotent invariant modules considered

Le Van Thuyet 1 ; Phan Dan 2 ; Truong Cong Quynh 3

1 Department of Mathematics Hue University 3 Le Loi Hue, Vietnam
2 Banking University of Ho Chi Minh City 39 Ham Nghi Ho Chi Minh City, Vietnam
3 Department of Mathematics Danang University 459 Ton Duc Thang DaNang, Vietnam
@article{10_4064_cm6496_1_2016,
     author = {Le Van Thuyet and Phan Dan and Truong Cong Quynh},
     title = {Modules which are invariant under idempotents of their envelopes},
     journal = {Colloquium Mathematicum},
     pages = {237--250},
     publisher = {mathdoc},
     volume = {143},
     number = {2},
     year = {2016},
     doi = {10.4064/cm6496-1-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6496-1-2016/}
}
TY  - JOUR
AU  - Le Van Thuyet
AU  - Phan Dan
AU  - Truong Cong Quynh
TI  - Modules which are invariant under idempotents of their envelopes
JO  - Colloquium Mathematicum
PY  - 2016
SP  - 237
EP  - 250
VL  - 143
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6496-1-2016/
DO  - 10.4064/cm6496-1-2016
LA  - en
ID  - 10_4064_cm6496_1_2016
ER  - 
%0 Journal Article
%A Le Van Thuyet
%A Phan Dan
%A Truong Cong Quynh
%T Modules which are invariant under idempotents of their envelopes
%J Colloquium Mathematicum
%D 2016
%P 237-250
%V 143
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6496-1-2016/
%R 10.4064/cm6496-1-2016
%G en
%F 10_4064_cm6496_1_2016
Le Van Thuyet; Phan Dan; Truong Cong Quynh. Modules which are invariant under idempotents of their envelopes. Colloquium Mathematicum, Tome 143 (2016) no. 2, pp. 237-250. doi : 10.4064/cm6496-1-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm6496-1-2016/

Cité par Sources :