On sequences over a finite abelian group with zero-sum subsequences of forbidden lengths
Colloquium Mathematicum, Tome 144 (2016) no. 1, pp. 31-44
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $G$ be an additive finite abelian group. For every positive
integer $\ell$, let $\mathrm{disc}_{\ell}(G)$ be the smallest
positive integer $t$ such that each sequence $S$ over $G$ of
length $|S|\geq t$ has a nonempty zero-sum subsequence of length
not equal to $\ell$. In this paper, we determine
$\mathrm{disc}_{\ell}(G)$ for certain finite groups, including
cyclic groups, the groups $G=C_2\oplus C_{2m}$ and elementary
abelian $2$-groups. Following Girard, we define $\mathrm{disc}(G)$
as the smallest positive integer $t$ such that every sequence $S$
over $G$ with $|S|\geq t$ has nonempty zero-sum
subsequences of distinct lengths. We shall prove that
$\mathrm{disc}(G)=\max \{\mathrm{disc}_{\ell}(G)\,|\, \ell \geq
1 \}$ and determine $\mathrm{disc}(G)$ for finite abelian $p$-groups
$G$, where $p\geq r(G)$ and $r(G)$ is the rank of $G$.
Keywords:
additive finite abelian group every positive integer ell mathrm disc ell smallest positive integer each sequence length geq has nonempty zero sum subsequence length equal ell paper determine mathrm disc ell certain finite groups including cyclic groups groups oplus elementary abelian groups following girard define mathrm disc smallest positive integer every sequence geq has nonempty zero sum subsequences distinct lengths shall prove mathrm disc max mathrm disc ell ell geq determine mathrm disc finite abelian p groups where geq rank nbsp
Affiliations des auteurs :
Weidong Gao 1 ; Yuanlin Li 2 ; Pingping Zhao 1 ; Jujuan Zhuang 3
@article{10_4064_cm6488_8_2015,
author = {Weidong Gao and Yuanlin Li and Pingping Zhao and Jujuan Zhuang},
title = {On sequences over a finite abelian group with zero-sum subsequences of forbidden lengths},
journal = {Colloquium Mathematicum},
pages = {31--44},
publisher = {mathdoc},
volume = {144},
number = {1},
year = {2016},
doi = {10.4064/cm6488-8-2015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6488-8-2015/}
}
TY - JOUR AU - Weidong Gao AU - Yuanlin Li AU - Pingping Zhao AU - Jujuan Zhuang TI - On sequences over a finite abelian group with zero-sum subsequences of forbidden lengths JO - Colloquium Mathematicum PY - 2016 SP - 31 EP - 44 VL - 144 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm6488-8-2015/ DO - 10.4064/cm6488-8-2015 LA - en ID - 10_4064_cm6488_8_2015 ER -
%0 Journal Article %A Weidong Gao %A Yuanlin Li %A Pingping Zhao %A Jujuan Zhuang %T On sequences over a finite abelian group with zero-sum subsequences of forbidden lengths %J Colloquium Mathematicum %D 2016 %P 31-44 %V 144 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm6488-8-2015/ %R 10.4064/cm6488-8-2015 %G en %F 10_4064_cm6488_8_2015
Weidong Gao; Yuanlin Li; Pingping Zhao; Jujuan Zhuang. On sequences over a finite abelian group with zero-sum subsequences of forbidden lengths. Colloquium Mathematicum, Tome 144 (2016) no. 1, pp. 31-44. doi: 10.4064/cm6488-8-2015
Cité par Sources :