Ergodicity and conservativity of products of infinite transformations and their inverses
Colloquium Mathematicum, Tome 143 (2016) no. 2, pp. 271-291
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We construct a class of rank-one infinite measure-preserving transformations such that for each transformation $T$ in the class, the cartesian product $T\times T$ is ergodic, but the product $T\times T^{-1}$ is not. We also prove that the product of any rank-one transformation with its inverse is conservative, while there are infinite measure-preserving conservative ergodic Markov shifts whose product with their inverse is not conservative.
Keywords:
construct class rank one infinite measure preserving transformations each transformation class cartesian product times ergodic product times prove product rank one transformation its inverse conservative while there infinite measure preserving conservative ergodic markov shifts whose product their inverse conservative
Affiliations des auteurs :
Julien Clancy 1 ; Rina Friedberg 2 ; Indraneel Kasmalkar 3 ; Isaac Loh 4 ; Tudor Pădurariu 5 ; Cesar E. Silva 6 ; Sahana Vasudevan 7
@article{10_4064_cm6482_10_2015,
author = {Julien Clancy and Rina Friedberg and Indraneel Kasmalkar and Isaac Loh and Tudor P\u{a}durariu and Cesar E. Silva and Sahana Vasudevan},
title = {Ergodicity and conservativity of products of infinite transformations and their inverses},
journal = {Colloquium Mathematicum},
pages = {271--291},
publisher = {mathdoc},
volume = {143},
number = {2},
year = {2016},
doi = {10.4064/cm6482-10-2015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6482-10-2015/}
}
TY - JOUR AU - Julien Clancy AU - Rina Friedberg AU - Indraneel Kasmalkar AU - Isaac Loh AU - Tudor Pădurariu AU - Cesar E. Silva AU - Sahana Vasudevan TI - Ergodicity and conservativity of products of infinite transformations and their inverses JO - Colloquium Mathematicum PY - 2016 SP - 271 EP - 291 VL - 143 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm6482-10-2015/ DO - 10.4064/cm6482-10-2015 LA - en ID - 10_4064_cm6482_10_2015 ER -
%0 Journal Article %A Julien Clancy %A Rina Friedberg %A Indraneel Kasmalkar %A Isaac Loh %A Tudor Pădurariu %A Cesar E. Silva %A Sahana Vasudevan %T Ergodicity and conservativity of products of infinite transformations and their inverses %J Colloquium Mathematicum %D 2016 %P 271-291 %V 143 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm6482-10-2015/ %R 10.4064/cm6482-10-2015 %G en %F 10_4064_cm6482_10_2015
Julien Clancy; Rina Friedberg; Indraneel Kasmalkar; Isaac Loh; Tudor Pădurariu; Cesar E. Silva; Sahana Vasudevan. Ergodicity and conservativity of products of infinite transformations and their inverses. Colloquium Mathematicum, Tome 143 (2016) no. 2, pp. 271-291. doi: 10.4064/cm6482-10-2015
Cité par Sources :