Toeplitz subshift whose automorphism group is not finitely generated
Colloquium Mathematicum, Tome 146 (2017) no. 1, pp. 53-76
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We compute an explicit presentation of the (topological) automorphism group of a particular Toeplitz subshift with subquadratic complexity. The automorphism group is a non-finitely generated subgroup of rational numbers, or alternatively the $5$-adic integers, under addition, the shift map corresponding to the rational number 1. The group is
$$ (\langle(5/2)^i \mid i \in \mathbb {N}\rangle , +) \leq (\mathbb {Q}, +). $$
Keywords:
compute explicit presentation topological automorphism group particular toeplitz subshift subquadratic complexity automorphism group non finitely generated subgroup rational numbers alternatively adic integers under addition shift map corresponding rational number group langle mid mathbb rangle leq mathbb
Affiliations des auteurs :
Ville Salo 1
@article{10_4064_cm6463_2_2016,
author = {Ville Salo},
title = {Toeplitz subshift whose automorphism group is not finitely generated},
journal = {Colloquium Mathematicum},
pages = {53--76},
publisher = {mathdoc},
volume = {146},
number = {1},
year = {2017},
doi = {10.4064/cm6463-2-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6463-2-2016/}
}
TY - JOUR AU - Ville Salo TI - Toeplitz subshift whose automorphism group is not finitely generated JO - Colloquium Mathematicum PY - 2017 SP - 53 EP - 76 VL - 146 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm6463-2-2016/ DO - 10.4064/cm6463-2-2016 LA - en ID - 10_4064_cm6463_2_2016 ER -
Ville Salo. Toeplitz subshift whose automorphism group is not finitely generated. Colloquium Mathematicum, Tome 146 (2017) no. 1, pp. 53-76. doi: 10.4064/cm6463-2-2016
Cité par Sources :