Approximate biprojectivity and $\phi $-biflatness of certain Banach algebras
Colloquium Mathematicum, Tome 145 (2016) no. 2, pp. 273-284
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
In the first part of the paper, we investigate the approximate biprojectivity of some Banach algebras related to the locally compact groups. We show that a Segal algebra $S(G)$ is approximate biprojective if and only if $G$ is compact. Also for every continuous weight $w$, we show that $L^{1}(G,w)$ is approximate biprojective if and only if $G$ is compact, provided that $w(g)\geq 1$ for every $g\in G$.
In the second part, we study $\phi $-biflatness of some Banach algebras, where $\phi $ is a character. We show that if $S(G)$ is $\phi _{0}$-biflat, then $G$ is an amenable group, where $\phi _{0}$ is the augmentation character on $S(G)$. Finally, we show that the $\phi $-biflatness of $L^{1}(G)^{**}$ implies the amenability of $G$.
Keywords:
first part paper investigate approximate biprojectivity banach algebras related locally compact groups segal algebra approximate biprojective only compact every continuous weight approximate biprojective only compact provided geq every second part study phi biflatness banach algebras where phi character phi biflat amenable group where phi augmentation character finally phi biflatness ** implies amenability nbsp
Affiliations des auteurs :
A. Sahami 1 ; A. Pourabbas 2
@article{10_4064_cm6459_11_2015,
author = {A. Sahami and A. Pourabbas},
title = {Approximate biprojectivity and $\phi $-biflatness of certain {Banach} algebras},
journal = {Colloquium Mathematicum},
pages = {273--284},
publisher = {mathdoc},
volume = {145},
number = {2},
year = {2016},
doi = {10.4064/cm6459-11-2015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6459-11-2015/}
}
TY - JOUR AU - A. Sahami AU - A. Pourabbas TI - Approximate biprojectivity and $\phi $-biflatness of certain Banach algebras JO - Colloquium Mathematicum PY - 2016 SP - 273 EP - 284 VL - 145 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm6459-11-2015/ DO - 10.4064/cm6459-11-2015 LA - en ID - 10_4064_cm6459_11_2015 ER -
%0 Journal Article %A A. Sahami %A A. Pourabbas %T Approximate biprojectivity and $\phi $-biflatness of certain Banach algebras %J Colloquium Mathematicum %D 2016 %P 273-284 %V 145 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm6459-11-2015/ %R 10.4064/cm6459-11-2015 %G en %F 10_4064_cm6459_11_2015
A. Sahami; A. Pourabbas. Approximate biprojectivity and $\phi $-biflatness of certain Banach algebras. Colloquium Mathematicum, Tome 145 (2016) no. 2, pp. 273-284. doi: 10.4064/cm6459-11-2015
Cité par Sources :