Melkersson condition on Serre subcategories
Colloquium Mathematicum, Tome 144 (2016) no. 2, pp. 289-300
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $R$ be a commutative noetherian ring, let $\mathfrak a$ be an ideal of $R$, and let $\mathcal {S}$ be a subcategory of the category of $R$-modules. The condition $C_{\mathfrak a}$, defined for $R$-modules, was introduced by Aghapournahr and Melkersson (2008) in order to study when the local cohomology modules relative to $\mathfrak a$ belong to $\mathcal {S}$. In this paper, we define and study the class $\mathcal {S}_{\mathfrak a}$ consisting of all modules satisfying $C_{\mathfrak a}$. If $\mathfrak a$ and $\mathfrak b$ are ideals of $R$, we get a necessary and sufficient condition for $\mathcal {S}$ to satisfy $C_{\mathfrak a}$ and $C_{\mathfrak b}$ simultaneously. We also find some sufficient conditions under which $\mathcal {S}$ satisfies $C_{\mathfrak a}$. As an application, we investigate when local cohomology modules lie in a Serre subcategory.
Keywords:
commutative noetherian ring mathfrak ideal nbsp mathcal subcategory category r modules condition mathfrak defined r modules introduced aghapournahr melkersson order study local cohomology modules relative mathfrak belong mathcal paper define study class mathcal mathfrak consisting modules satisfying nbsp mathfrak mathfrak mathfrak ideals get necessary sufficient condition mathcal satisfy mathfrak mathfrak simultaneously sufficient conditions under which mathcal satisfies mathfrak application investigate local cohomology modules lie serre subcategory
Affiliations des auteurs :
Reza Sazeedeh 1 ; Rasul Rasuli 2
@article{10_4064_cm6384_9_2015,
author = {Reza Sazeedeh and Rasul Rasuli},
title = {Melkersson condition on {Serre} subcategories},
journal = {Colloquium Mathematicum},
pages = {289--300},
publisher = {mathdoc},
volume = {144},
number = {2},
year = {2016},
doi = {10.4064/cm6384-9-2015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6384-9-2015/}
}
TY - JOUR AU - Reza Sazeedeh AU - Rasul Rasuli TI - Melkersson condition on Serre subcategories JO - Colloquium Mathematicum PY - 2016 SP - 289 EP - 300 VL - 144 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm6384-9-2015/ DO - 10.4064/cm6384-9-2015 LA - en ID - 10_4064_cm6384_9_2015 ER -
Reza Sazeedeh; Rasul Rasuli. Melkersson condition on Serre subcategories. Colloquium Mathematicum, Tome 144 (2016) no. 2, pp. 289-300. doi: 10.4064/cm6384-9-2015
Cité par Sources :