Melkersson condition on Serre subcategories
Colloquium Mathematicum, Tome 144 (2016) no. 2, pp. 289-300.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $R$ be a commutative noetherian ring, let $\mathfrak a$ be an ideal of $R$, and let $\mathcal {S}$ be a subcategory of the category of $R$-modules. The condition $C_{\mathfrak a}$, defined for $R$-modules, was introduced by Aghapournahr and Melkersson (2008) in order to study when the local cohomology modules relative to $\mathfrak a$ belong to $\mathcal {S}$. In this paper, we define and study the class $\mathcal {S}_{\mathfrak a}$ consisting of all modules satisfying $C_{\mathfrak a}$. If $\mathfrak a$ and $\mathfrak b$ are ideals of $R$, we get a necessary and sufficient condition for $\mathcal {S}$ to satisfy $C_{\mathfrak a}$ and $C_{\mathfrak b}$ simultaneously. We also find some sufficient conditions under which $\mathcal {S}$ satisfies $C_{\mathfrak a}$. As an application, we investigate when local cohomology modules lie in a Serre subcategory.
DOI : 10.4064/cm6384-9-2015
Keywords: commutative noetherian ring mathfrak ideal nbsp mathcal subcategory category r modules condition mathfrak defined r modules introduced aghapournahr melkersson order study local cohomology modules relative mathfrak belong mathcal paper define study class mathcal mathfrak consisting modules satisfying nbsp mathfrak mathfrak mathfrak ideals get necessary sufficient condition mathcal satisfy mathfrak mathfrak simultaneously sufficient conditions under which mathcal satisfies mathfrak application investigate local cohomology modules lie serre subcategory

Reza Sazeedeh 1 ; Rasul Rasuli 2

1 Department of Mathematics Urmia University P.O. Box 165, Urmia, Iran and School of Mathematics Institute for Research in Fundamental Sciences (IPM) P.O. Box 19395-5746, Tehran, Iran
2 Mathematics Department Faculty of Science Payame Noor University (PNU) Tehran, Iran
@article{10_4064_cm6384_9_2015,
     author = {Reza Sazeedeh and Rasul Rasuli},
     title = {Melkersson condition on {Serre} subcategories},
     journal = {Colloquium Mathematicum},
     pages = {289--300},
     publisher = {mathdoc},
     volume = {144},
     number = {2},
     year = {2016},
     doi = {10.4064/cm6384-9-2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6384-9-2015/}
}
TY  - JOUR
AU  - Reza Sazeedeh
AU  - Rasul Rasuli
TI  - Melkersson condition on Serre subcategories
JO  - Colloquium Mathematicum
PY  - 2016
SP  - 289
EP  - 300
VL  - 144
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6384-9-2015/
DO  - 10.4064/cm6384-9-2015
LA  - en
ID  - 10_4064_cm6384_9_2015
ER  - 
%0 Journal Article
%A Reza Sazeedeh
%A Rasul Rasuli
%T Melkersson condition on Serre subcategories
%J Colloquium Mathematicum
%D 2016
%P 289-300
%V 144
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6384-9-2015/
%R 10.4064/cm6384-9-2015
%G en
%F 10_4064_cm6384_9_2015
Reza Sazeedeh; Rasul Rasuli. Melkersson condition on Serre subcategories. Colloquium Mathematicum, Tome 144 (2016) no. 2, pp. 289-300. doi : 10.4064/cm6384-9-2015. http://geodesic.mathdoc.fr/articles/10.4064/cm6384-9-2015/

Cité par Sources :