Markov–Krein transform
Colloquium Mathematicum, Tome 144 (2016) no. 1, pp. 137-156.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The Markov–Krein transform maps a positive measure on the real line to a probability measure. It is implicitly defined through an identity linking two holomorphic functions. In this paper an explicit formula is given. Its proof is obtained by considering boundary values of holomorhic functions. This transform appears in several classical questions in analysis and probability theory: Markov moment problem, Dirichlet distributions and processes, orbital measures. An asymptotic property for this transform involves Thorin–Bondesson distributions.
DOI : 10.4064/cm6235-10-2015
Mots-clés : markov krein transform maps positive measure real line probability measure implicitly defined through identity linking holomorphic functions paper explicit formula given its proof obtained considering boundary values holomorhic functions transform appears several classical questions analysis probability theory markov moment problem dirichlet distributions processes orbital measures asymptotic property transform involves thorin bondesson distributions

Jacques Faraut 1 ; Faiza Fourati 2

1 Institut de Mathématiques de Jussieu Université Pierre et Marie Curie 4 place Jussieu, case 247 75252 Paris Cedex 05, France
2 Institut Préparatoire aux études d’Ingénieurs de Tunis Université de Tunis 1089 Montfleury, Tunis, Tunisie
@article{10_4064_cm6235_10_2015,
     author = {Jacques Faraut and Faiza Fourati},
     title = {Markov{\textendash}Krein transform},
     journal = {Colloquium Mathematicum},
     pages = {137--156},
     publisher = {mathdoc},
     volume = {144},
     number = {1},
     year = {2016},
     doi = {10.4064/cm6235-10-2015},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6235-10-2015/}
}
TY  - JOUR
AU  - Jacques Faraut
AU  - Faiza Fourati
TI  - Markov–Krein transform
JO  - Colloquium Mathematicum
PY  - 2016
SP  - 137
EP  - 156
VL  - 144
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6235-10-2015/
DO  - 10.4064/cm6235-10-2015
LA  - fr
ID  - 10_4064_cm6235_10_2015
ER  - 
%0 Journal Article
%A Jacques Faraut
%A Faiza Fourati
%T Markov–Krein transform
%J Colloquium Mathematicum
%D 2016
%P 137-156
%V 144
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6235-10-2015/
%R 10.4064/cm6235-10-2015
%G fr
%F 10_4064_cm6235_10_2015
Jacques Faraut; Faiza Fourati. Markov–Krein transform. Colloquium Mathematicum, Tome 144 (2016) no. 1, pp. 137-156. doi : 10.4064/cm6235-10-2015. http://geodesic.mathdoc.fr/articles/10.4064/cm6235-10-2015/

Cité par Sources :